Proof of Theorem lclkrlem2e
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lclkrlem2e.k | . . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 | 1 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 3 |  | lclkrlem2e.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | 
| 4 | 3 | eldifad 3963 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 5 | 4 | snssd 4809 | . . . . . . 7
⊢ (𝜑 → {𝑋} ⊆ 𝑉) | 
| 6 | 5 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → {𝑋} ⊆ 𝑉) | 
| 7 |  | lclkrlem2e.h | . . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | eqid 2737 | . . . . . . 7
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | 
| 9 |  | lclkrlem2e.u | . . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 10 |  | lclkrlem2e.v | . . . . . . 7
⊢ 𝑉 = (Base‘𝑈) | 
| 11 |  | lclkrlem2e.o | . . . . . . 7
⊢  ⊥ =
((ocH‘𝐾)‘𝑊) | 
| 12 | 7, 8, 9, 10, 11 | dochcl 41355 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) | 
| 13 | 2, 6, 12 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) | 
| 14 | 7, 8, 11 | dochoc 41369 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) | 
| 15 | 2, 13, 14 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) | 
| 16 |  | lclkrlem2e.le | . . . . . . . 8
⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| 17 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| 18 |  | inidm 4227 | . . . . . . . . . . 11
⊢ ((𝐿‘𝐸) ∩ (𝐿‘𝐸)) = (𝐿‘𝐸) | 
| 19 |  | lclkrlem2e.ne | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐿‘𝐸) = (𝐿‘𝐺)) | 
| 20 | 19 | ineq2d 4220 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐸)) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) | 
| 21 | 18, 20 | eqtr3id 2791 | . . . . . . . . . 10
⊢ (𝜑 → (𝐿‘𝐸) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) | 
| 22 |  | lclkrlem2e.f | . . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑈) | 
| 23 |  | lclkrlem2e.l | . . . . . . . . . . 11
⊢ 𝐿 = (LKer‘𝑈) | 
| 24 |  | lclkrlem2e.d | . . . . . . . . . . 11
⊢ 𝐷 = (LDual‘𝑈) | 
| 25 |  | lclkrlem2e.p | . . . . . . . . . . 11
⊢  + =
(+g‘𝐷) | 
| 26 | 7, 9, 1 | dvhlmod 41112 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 27 |  | lclkrlem2e.e | . . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ 𝐹) | 
| 28 |  | lclkrlem2e.g | . . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| 29 | 22, 23, 24, 25, 26, 27, 28 | lkrin 39165 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) | 
| 30 | 21, 29 | eqsstrd 4018 | . . . . . . . . 9
⊢ (𝜑 → (𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺))) | 
| 31 | 30 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺))) | 
| 32 |  | eqid 2737 | . . . . . . . . 9
⊢
(LSHyp‘𝑈) =
(LSHyp‘𝑈) | 
| 33 | 7, 9, 1 | dvhlvec 41111 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 34 | 33 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → 𝑈 ∈ LVec) | 
| 35 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) | 
| 36 | 7, 9, 11, 10, 35, 1, 5 | dochocsp 41381 | . . . . . . . . . . . 12
⊢ (𝜑 → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) | 
| 38 | 17, 37 | eqtr4d 2780 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = ( ⊥
‘((LSpan‘𝑈)‘{𝑋}))) | 
| 39 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) | 
| 40 |  | lclkrlem2e.z | . . . . . . . . . . . . 13
⊢  0 =
(0g‘𝑈) | 
| 41 | 10, 35, 40, 39, 26, 3 | lsatlspsn 38994 | . . . . . . . . . . . 12
⊢ (𝜑 → ((LSpan‘𝑈)‘{𝑋}) ∈ (LSAtoms‘𝑈)) | 
| 42 | 41 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((LSpan‘𝑈)‘{𝑋}) ∈ (LSAtoms‘𝑈)) | 
| 43 | 7, 9, 11, 39, 32, 2, 42 | dochsatshp 41453 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) ∈ (LSHyp‘𝑈)) | 
| 44 | 38, 43 | eqeltrd 2841 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) ∈ (LSHyp‘𝑈)) | 
| 45 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) | 
| 46 | 32, 34, 44, 45 | lshpcmp 38989 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (𝐿‘𝐸) = (𝐿‘(𝐸 + 𝐺)))) | 
| 47 | 31, 46 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = (𝐿‘(𝐸 + 𝐺))) | 
| 48 | 17, 47 | eqtr3d 2779 | . . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺))) | 
| 49 | 48 | fveq2d 6910 | . . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘{𝑋})) = ( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) | 
| 50 | 49 | fveq2d 6910 | . . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺))))) | 
| 51 | 15, 50, 48 | 3eqtr3d 2785 | . . 3
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| 52 | 51 | ex 412 | . 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) | 
| 53 | 7, 9, 11, 10, 1 | dochoc1 41363 | . . 3
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉) | 
| 54 |  | 2fveq3 6911 | . . . 4
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥
‘𝑉))) | 
| 55 |  | id 22 | . . . 4
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) | 
| 56 | 54, 55 | eqeq12d 2753 | . . 3
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → (( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)) ↔ ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉)) | 
| 57 | 53, 56 | syl5ibrcom 247 | . 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) | 
| 58 | 22, 24, 25, 26, 27, 28 | ldualvaddcl 39131 | . . 3
⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) | 
| 59 | 10, 32, 22, 23, 33, 58 | lkrshpor 39108 | . 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉)) | 
| 60 | 52, 57, 59 | mpjaod 861 | 1
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |