Proof of Theorem lclkrlem2e
Step | Hyp | Ref
| Expression |
1 | | lclkrlem2e.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | lclkrlem2e.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
4 | 3 | eldifad 3899 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
5 | 4 | snssd 4742 |
. . . . . . 7
⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → {𝑋} ⊆ 𝑉) |
7 | | lclkrlem2e.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | eqid 2738 |
. . . . . . 7
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
9 | | lclkrlem2e.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | lclkrlem2e.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑈) |
11 | | lclkrlem2e.o |
. . . . . . 7
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
12 | 7, 8, 9, 10, 11 | dochcl 39367 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
13 | 2, 6, 12 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
14 | 7, 8, 11 | dochoc 39381 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
15 | 2, 13, 14 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
16 | | lclkrlem2e.le |
. . . . . . . 8
⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
18 | | inidm 4152 |
. . . . . . . . . . 11
⊢ ((𝐿‘𝐸) ∩ (𝐿‘𝐸)) = (𝐿‘𝐸) |
19 | | lclkrlem2e.ne |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿‘𝐸) = (𝐿‘𝐺)) |
20 | 19 | ineq2d 4146 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐸)) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) |
21 | 18, 20 | eqtr3id 2792 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘𝐸) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) |
22 | | lclkrlem2e.f |
. . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑈) |
23 | | lclkrlem2e.l |
. . . . . . . . . . 11
⊢ 𝐿 = (LKer‘𝑈) |
24 | | lclkrlem2e.d |
. . . . . . . . . . 11
⊢ 𝐷 = (LDual‘𝑈) |
25 | | lclkrlem2e.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐷) |
26 | 7, 9, 1 | dvhlmod 39124 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | | lclkrlem2e.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ 𝐹) |
28 | | lclkrlem2e.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
29 | 22, 23, 24, 25, 26, 27, 28 | lkrin 37178 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) |
30 | 21, 29 | eqsstrd 3959 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺))) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺))) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSHyp‘𝑈) =
(LSHyp‘𝑈) |
33 | 7, 9, 1 | dvhlvec 39123 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) |
34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → 𝑈 ∈ LVec) |
35 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
36 | 7, 9, 11, 10, 35, 1, 5 | dochocsp 39393 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) |
37 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) |
38 | 17, 37 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = ( ⊥
‘((LSpan‘𝑈)‘{𝑋}))) |
39 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
40 | | lclkrlem2e.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑈) |
41 | 10, 35, 40, 39, 26, 3 | lsatlspsn 37007 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((LSpan‘𝑈)‘{𝑋}) ∈ (LSAtoms‘𝑈)) |
42 | 41 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((LSpan‘𝑈)‘{𝑋}) ∈ (LSAtoms‘𝑈)) |
43 | 7, 9, 11, 39, 32, 2, 42 | dochsatshp 39465 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑋})) ∈ (LSHyp‘𝑈)) |
44 | 38, 43 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) ∈ (LSHyp‘𝑈)) |
45 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) |
46 | 32, 34, 44, 45 | lshpcmp 37002 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((𝐿‘𝐸) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (𝐿‘𝐸) = (𝐿‘(𝐸 + 𝐺)))) |
47 | 31, 46 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐸) = (𝐿‘(𝐸 + 𝐺))) |
48 | 17, 47 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺))) |
49 | 48 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘{𝑋})) = ( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) |
50 | 49 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺))))) |
51 | 15, 50, 48 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
52 | 51 | ex 413 |
. 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) |
53 | 7, 9, 11, 10, 1 | dochoc1 39375 |
. . 3
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉) |
54 | | 2fveq3 6779 |
. . . 4
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥
‘𝑉))) |
55 | | id 22 |
. . . 4
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
56 | 54, 55 | eqeq12d 2754 |
. . 3
⊢ ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → (( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)) ↔ ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉)) |
57 | 53, 56 | syl5ibrcom 246 |
. 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) = 𝑉 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) |
58 | 22, 24, 25, 26, 27, 28 | ldualvaddcl 37144 |
. . 3
⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
59 | 10, 32, 22, 23, 33, 58 | lkrshpor 37121 |
. 2
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉)) |
60 | 52, 57, 59 | mpjaod 857 |
1
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |