MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod2 Structured version   Visualization version   GIF version

Theorem lsmmod2 19573
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))

Proof of Theorem lsmmod2
StepHypRef Expression
1 simpl3 1194 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝐺))
2 eqid 2729 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
32oppgsubg 19260 . . . . . 6 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
41, 3eleqtrdi 2838 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘(oppg𝐺)))
5 simpl2 1193 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝐺))
65, 3eleqtrdi 2838 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘(oppg𝐺)))
7 simpl1 1192 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
87, 3eleqtrdi 2838 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘(oppg𝐺)))
9 simpr 484 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈𝑆)
10 eqid 2729 . . . . . 6 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
1110lsmmod 19572 . . . . 5 (((𝑈 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg𝐺))) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
124, 6, 8, 9, 11syl31anc 1375 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
1312eqcomd 2735 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)))
14 incom 4162 . . 3 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇))
15 incom 4162 . . . 4 (𝑇𝑆) = (𝑆𝑇)
1615oveq2i 7364 . . 3 (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇))
1713, 14, 163eqtr3g 2787 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)))
18 lsmmod.p . . . 4 = (LSSum‘𝐺)
192, 18oppglsm 19539 . . 3 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
2019ineq2i 4170 . 2 (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑆 ∩ (𝑇 𝑈))
212, 18oppglsm 19539 . 2 (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)) = ((𝑆𝑇) 𝑈)
2217, 20, 213eqtr3g 2787 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905  cfv 6486  (class class class)co 7353  SubGrpcsubg 19017  oppgcoppg 19242  LSSumclsm 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-subg 19020  df-oppg 19243  df-lsm 19533
This theorem is referenced by:  lcvexchlem3  39014  lcfrlem23  41544
  Copyright terms: Public domain W3C validator