| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmmod2 | Structured version Visualization version GIF version | ||
| Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmmod.p | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmmod2 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 3 | 2 | oppgsubg 19351 | . . . . . 6 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
| 4 | 1, 3 | eleqtrdi 2845 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
| 5 | simpl2 1193 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 6 | 5, 3 | eleqtrdi 2845 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
| 7 | simpl1 1192 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 8 | 7, 3 | eleqtrdi 2845 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
| 9 | simpr 484 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
| 10 | eqid 2736 | . . . . . 6 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
| 11 | 10 | lsmmod 19661 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
| 12 | 4, 6, 8, 9, 11 | syl31anc 1375 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
| 13 | 12 | eqcomd 2742 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆))) |
| 14 | incom 4189 | . . 3 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) | |
| 15 | incom 4189 | . . . 4 ⊢ (𝑇 ∩ 𝑆) = (𝑆 ∩ 𝑇) | |
| 16 | 15 | oveq2i 7421 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) |
| 17 | 13, 14, 16 | 3eqtr3g 2794 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇))) |
| 18 | lsmmod.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 19 | 2, 18 | oppglsm 19628 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
| 20 | 19 | ineq2i 4197 | . 2 ⊢ (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
| 21 | 2, 18 | oppglsm 19628 | . 2 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈) |
| 22 | 17, 20, 21 | 3eqtr3g 2794 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 SubGrpcsubg 19108 oppgcoppg 19333 LSSumclsm 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-subg 19111 df-oppg 19334 df-lsm 19622 |
| This theorem is referenced by: lcvexchlem3 39059 lcfrlem23 41589 |
| Copyright terms: Public domain | W3C validator |