MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod2 Structured version   Visualization version   GIF version

Theorem lsmmod2 18801
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))

Proof of Theorem lsmmod2
StepHypRef Expression
1 simpl3 1189 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝐺))
2 eqid 2821 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
32oppgsubg 18490 . . . . . 6 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
41, 3eleqtrdi 2923 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘(oppg𝐺)))
5 simpl2 1188 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝐺))
65, 3eleqtrdi 2923 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘(oppg𝐺)))
7 simpl1 1187 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
87, 3eleqtrdi 2923 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘(oppg𝐺)))
9 simpr 487 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈𝑆)
10 eqid 2821 . . . . . 6 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
1110lsmmod 18800 . . . . 5 (((𝑈 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg𝐺))) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
124, 6, 8, 9, 11syl31anc 1369 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
1312eqcomd 2827 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)))
14 incom 4177 . . 3 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇))
15 incom 4177 . . . 4 (𝑇𝑆) = (𝑆𝑇)
1615oveq2i 7166 . . 3 (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇))
1713, 14, 163eqtr3g 2879 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)))
18 lsmmod.p . . . 4 = (LSSum‘𝐺)
192, 18oppglsm 18766 . . 3 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
2019ineq2i 4185 . 2 (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑆 ∩ (𝑇 𝑈))
212, 18oppglsm 18766 . 2 (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)) = ((𝑆𝑇) 𝑈)
2217, 20, 213eqtr3g 2879 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  wss 3935  cfv 6354  (class class class)co 7155  SubGrpcsubg 18272  oppgcoppg 18472  LSSumclsm 18758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-subg 18275  df-oppg 18473  df-lsm 18760
This theorem is referenced by:  lcvexchlem3  36171  lcfrlem23  38700
  Copyright terms: Public domain W3C validator