Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmmod2 | Structured version Visualization version GIF version |
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmmod.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmmod2 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1190 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘𝐺)) | |
2 | eqid 2758 | . . . . . . 7 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
3 | 2 | oppgsubg 18558 | . . . . . 6 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
4 | 1, 3 | eleqtrdi 2862 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
5 | simpl2 1189 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘𝐺)) | |
6 | 5, 3 | eleqtrdi 2862 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
7 | simpl1 1188 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
8 | 7, 3 | eleqtrdi 2862 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
9 | simpr 488 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
10 | eqid 2758 | . . . . . 6 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
11 | 10 | lsmmod 18868 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
12 | 4, 6, 8, 9, 11 | syl31anc 1370 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
13 | 12 | eqcomd 2764 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆))) |
14 | incom 4106 | . . 3 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) | |
15 | incom 4106 | . . . 4 ⊢ (𝑇 ∩ 𝑆) = (𝑆 ∩ 𝑇) | |
16 | 15 | oveq2i 7161 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) |
17 | 13, 14, 16 | 3eqtr3g 2816 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇))) |
18 | lsmmod.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
19 | 2, 18 | oppglsm 18834 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
20 | 19 | ineq2i 4114 | . 2 ⊢ (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | 2, 18 | oppglsm 18834 | . 2 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈) |
22 | 17, 20, 21 | 3eqtr3g 2816 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 SubGrpcsubg 18340 oppgcoppg 18540 LSSumclsm 18826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-0g 16773 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-grp 18172 df-minusg 18173 df-subg 18343 df-oppg 18541 df-lsm 18828 |
This theorem is referenced by: lcvexchlem3 36612 lcfrlem23 39141 |
Copyright terms: Public domain | W3C validator |