![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmmod2 | Structured version Visualization version GIF version |
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmmod.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmmod2 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘𝐺)) | |
2 | eqid 2735 | . . . . . . 7 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
3 | 2 | oppgsubg 19397 | . . . . . 6 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
4 | 1, 3 | eleqtrdi 2849 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
5 | simpl2 1191 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘𝐺)) | |
6 | 5, 3 | eleqtrdi 2849 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
7 | simpl1 1190 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
8 | 7, 3 | eleqtrdi 2849 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
9 | simpr 484 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
10 | eqid 2735 | . . . . . 6 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
11 | 10 | lsmmod 19708 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
12 | 4, 6, 8, 9, 11 | syl31anc 1372 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆)) |
13 | 12 | eqcomd 2741 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆))) |
14 | incom 4217 | . . 3 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) | |
15 | incom 4217 | . . . 4 ⊢ (𝑇 ∩ 𝑆) = (𝑆 ∩ 𝑇) | |
16 | 15 | oveq2i 7442 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑇 ∩ 𝑆)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) |
17 | 13, 14, 16 | 3eqtr3g 2798 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇))) |
18 | lsmmod.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
19 | 2, 18 | oppglsm 19675 | . . 3 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
20 | 19 | ineq2i 4225 | . 2 ⊢ (𝑆 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑇)) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | 2, 18 | oppglsm 19675 | . 2 ⊢ (𝑈(LSSum‘(oppg‘𝐺))(𝑆 ∩ 𝑇)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈) |
22 | 17, 20, 21 | 3eqtr3g 2798 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈 ⊆ 𝑆) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑆 ∩ 𝑇) ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 SubGrpcsubg 19151 oppgcoppg 19376 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-subg 19154 df-oppg 19377 df-lsm 19669 |
This theorem is referenced by: lcvexchlem3 39018 lcfrlem23 41548 |
Copyright terms: Public domain | W3C validator |