MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod2 Structured version   Visualization version   GIF version

Theorem lsmmod2 19588
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 8-Jan-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))

Proof of Theorem lsmmod2
StepHypRef Expression
1 simpl3 1194 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝐺))
2 eqid 2731 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
32oppgsubg 19275 . . . . . 6 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
41, 3eleqtrdi 2841 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘(oppg𝐺)))
5 simpl2 1193 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝐺))
65, 3eleqtrdi 2841 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑇 ∈ (SubGrp‘(oppg𝐺)))
7 simpl1 1192 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
87, 3eleqtrdi 2841 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑆 ∈ (SubGrp‘(oppg𝐺)))
9 simpr 484 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → 𝑈𝑆)
10 eqid 2731 . . . . . 6 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
1110lsmmod 19587 . . . . 5 (((𝑈 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑇 ∈ (SubGrp‘(oppg𝐺)) ∧ 𝑆 ∈ (SubGrp‘(oppg𝐺))) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
124, 6, 8, 9, 11syl31anc 1375 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆))
1312eqcomd 2737 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)))
14 incom 4156 . . 3 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇))
15 incom 4156 . . . 4 (𝑇𝑆) = (𝑆𝑇)
1615oveq2i 7357 . . 3 (𝑈(LSSum‘(oppg𝐺))(𝑇𝑆)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇))
1713, 14, 163eqtr3g 2789 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)))
18 lsmmod.p . . . 4 = (LSSum‘𝐺)
192, 18oppglsm 19554 . . 3 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
2019ineq2i 4164 . 2 (𝑆 ∩ (𝑈(LSSum‘(oppg𝐺))𝑇)) = (𝑆 ∩ (𝑇 𝑈))
212, 18oppglsm 19554 . 2 (𝑈(LSSum‘(oppg𝐺))(𝑆𝑇)) = ((𝑆𝑇) 𝑈)
2217, 20, 213eqtr3g 2789 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑈𝑆) → (𝑆 ∩ (𝑇 𝑈)) = ((𝑆𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  cfv 6481  (class class class)co 7346  SubGrpcsubg 19033  oppgcoppg 19257  LSSumclsm 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-subg 19036  df-oppg 19258  df-lsm 19548
This theorem is referenced by:  lcvexchlem3  39145  lcfrlem23  41674
  Copyright terms: Public domain W3C validator