| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltne | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| ltne | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 11269 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | breq2 5111 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐴)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴)) |
| 4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵)) |
| 5 | 4 | necon2ad 2940 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ℝcr 11067 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: ltlen 11275 gtneii 11286 ltnei 11298 gtned 11309 gt0ne0 11643 lt0ne0 11644 coprm 16681 phibndlem 16740 cshwshashlem1 17066 chfacffsupp 22743 chfacfscmul0 22745 chfacfscmulgsum 22747 chfacfpmmul0 22749 chfacfpmmulgsum 22751 sineq0 26433 logbgt0b 26703 axlowdimlem16 28884 frgrogt3nreg 30326 staddi 32175 stadd3i 32177 knoppndvlem12 36511 knoppndvlem14 36513 tan2h 37606 poimirlem24 37638 ftc1cnnc 37686 fdc 37739 60gcd7e1 41993 sineq0ALT 44926 sqrtnegnre 47308 requad01 47622 rrx2plord2 48711 eenglngeehlnmlem1 48726 |
| Copyright terms: Public domain | W3C validator |