| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltne | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| ltne | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 11245 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | breq2 5106 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐴)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴)) |
| 4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵)) |
| 5 | 4 | necon2ad 2940 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ℝcr 11043 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: ltlen 11251 gtneii 11262 ltnei 11274 gtned 11285 gt0ne0 11619 lt0ne0 11620 coprm 16657 phibndlem 16716 cshwshashlem1 17042 chfacffsupp 22719 chfacfscmul0 22721 chfacfscmulgsum 22723 chfacfpmmul0 22725 chfacfpmmulgsum 22727 sineq0 26409 logbgt0b 26679 axlowdimlem16 28860 frgrogt3nreg 30299 staddi 32148 stadd3i 32150 knoppndvlem12 36484 knoppndvlem14 36486 tan2h 37579 poimirlem24 37611 ftc1cnnc 37659 fdc 37712 60gcd7e1 41966 sineq0ALT 44899 sqrtnegnre 47281 requad01 47595 rrx2plord2 48684 eenglngeehlnmlem1 48699 |
| Copyright terms: Public domain | W3C validator |