MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltne Structured version   Visualization version   GIF version

Theorem ltne 11311
Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 11309 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 5153 . . . . 5 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 318 . . . 4 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 246 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2956 . 2 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
65imp 408 1 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5149  cr 11109   < clt 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253
This theorem is referenced by:  ltlen  11315  gtneii  11326  ltnei  11338  gtned  11349  gt0ne0  11679  lt0ne0  11680  gt0ne0d  11778  coprm  16648  phibndlem  16703  cshwshashlem1  17029  chfacffsupp  22358  chfacfscmul0  22360  chfacfscmulgsum  22362  chfacfpmmul0  22364  chfacfpmmulgsum  22366  sineq0  26033  logbgt0b  26298  axlowdimlem16  28215  frgrogt3nreg  29650  staddi  31499  stadd3i  31501  knoppndvlem12  35399  knoppndvlem14  35401  tan2h  36480  poimirlem24  36512  ftc1cnnc  36560  fdc  36613  60gcd7e1  40870  sineq0ALT  43698  sqrtnegnre  46015  requad01  46289  rrx2plord2  47408  eenglngeehlnmlem1  47423
  Copyright terms: Public domain W3C validator