MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltne Structured version   Visualization version   GIF version

Theorem ltne 11257
Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 11255 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 5110 . . . . 5 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 318 . . . 4 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 247 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2955 . 2 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
65imp 408 1 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940   class class class wbr 5106  cr 11055   < clt 11194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-pre-lttri 11130  ax-pre-lttrn 11131
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199
This theorem is referenced by:  ltlen  11261  gtneii  11272  ltnei  11284  gtned  11295  gt0ne0  11625  lt0ne0  11626  gt0ne0d  11724  coprm  16592  phibndlem  16647  cshwshashlem1  16973  chfacffsupp  22221  chfacfscmul0  22223  chfacfscmulgsum  22225  chfacfpmmul0  22227  chfacfpmmulgsum  22229  sineq0  25896  logbgt0b  26159  axlowdimlem16  27948  frgrogt3nreg  29383  staddi  31230  stadd3i  31232  knoppndvlem12  35032  knoppndvlem14  35034  tan2h  36116  poimirlem24  36148  ftc1cnnc  36196  fdc  36250  60gcd7e1  40508  sineq0ALT  43307  sqrtnegnre  45625  requad01  45899  rrx2plord2  46894  eenglngeehlnmlem1  46909
  Copyright terms: Public domain W3C validator