MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltne Structured version   Visualization version   GIF version

Theorem ltne 11271
Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 11269 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 5111 . . . . 5 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 318 . . . 4 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 247 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2940 . 2 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
65imp 406 1 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cr 11067   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  ltlen  11275  gtneii  11286  ltnei  11298  gtned  11309  gt0ne0  11643  lt0ne0  11644  coprm  16681  phibndlem  16740  cshwshashlem1  17066  chfacffsupp  22743  chfacfscmul0  22745  chfacfscmulgsum  22747  chfacfpmmul0  22749  chfacfpmmulgsum  22751  sineq0  26433  logbgt0b  26703  axlowdimlem16  28884  frgrogt3nreg  30326  staddi  32175  stadd3i  32177  knoppndvlem12  36511  knoppndvlem14  36513  tan2h  37606  poimirlem24  37638  ftc1cnnc  37686  fdc  37739  60gcd7e1  41993  sineq0ALT  44926  sqrtnegnre  47308  requad01  47622  rrx2plord2  48711  eenglngeehlnmlem1  48726
  Copyright terms: Public domain W3C validator