![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltne | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
ltne | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 11385 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | breq2 5170 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐴)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴)) |
4 | 1, 3 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵)) |
5 | 4 | necon2ad 2961 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℝcr 11183 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: ltlen 11391 gtneii 11402 ltnei 11414 gtned 11425 gt0ne0 11755 lt0ne0 11756 gt0ne0d 11854 coprm 16758 phibndlem 16817 cshwshashlem1 17143 chfacffsupp 22883 chfacfscmul0 22885 chfacfscmulgsum 22887 chfacfpmmul0 22889 chfacfpmmulgsum 22891 sineq0 26584 logbgt0b 26854 axlowdimlem16 28990 frgrogt3nreg 30429 staddi 32278 stadd3i 32280 knoppndvlem12 36489 knoppndvlem14 36491 tan2h 37572 poimirlem24 37604 ftc1cnnc 37652 fdc 37705 60gcd7e1 41962 sineq0ALT 44908 sqrtnegnre 47222 requad01 47495 rrx2plord2 48456 eenglngeehlnmlem1 48471 |
Copyright terms: Public domain | W3C validator |