Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltne | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
ltne | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 11070 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | breq2 5078 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐴)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴)) |
4 | 1, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵)) |
5 | 4 | necon2ad 2958 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
6 | 5 | imp 407 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ℝcr 10870 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: ltlen 11076 gtneii 11087 ltnei 11099 gtned 11110 gt0ne0 11440 lt0ne0 11441 gt0ne0d 11539 coprm 16416 phibndlem 16471 cshwshashlem1 16797 chfacffsupp 22005 chfacfscmul0 22007 chfacfscmulgsum 22009 chfacfpmmul0 22011 chfacfpmmulgsum 22013 sineq0 25680 logbgt0b 25943 axlowdimlem16 27325 frgrogt3nreg 28761 staddi 30608 stadd3i 30610 knoppndvlem12 34703 knoppndvlem14 34705 tan2h 35769 poimirlem24 35801 ftc1cnnc 35849 fdc 35903 60gcd7e1 40013 sineq0ALT 42557 sqrtnegnre 44799 requad01 45073 rrx2plord2 46068 eenglngeehlnmlem1 46083 |
Copyright terms: Public domain | W3C validator |