| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > squeeze0 | Structured version Visualization version GIF version | ||
| Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
| Ref | Expression |
|---|---|
| squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 2 | leloe 11199 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
| 4 | breq2 5095 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 5 | breq2 5095 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
| 7 | 6 | rspcv 3573 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → (0 < 𝐴 → 𝐴 < 𝐴))) |
| 8 | ltnr 11208 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 9 | 8 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 → 𝐴 = 0)) |
| 10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)) |
| 11 | 10 | imim2i 16 | . . . . . 6 ⊢ ((0 < 𝐴 → 𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))) |
| 12 | 11 | com13 88 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴 → 𝐴 < 𝐴) → 𝐴 = 0))) |
| 13 | 7, 12 | syl5d 73 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
| 14 | ax-1 6 | . . . . . 6 ⊢ (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) | |
| 15 | 14 | eqcoms 2739 | . . . . 5 ⊢ (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
| 17 | 13, 16 | jaod 859 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
| 18 | 3, 17 | sylbid 240 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
| 19 | 18 | 3imp 1110 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ℝcr 11005 0cc0 11006 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |