MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  squeeze0 Structured version   Visualization version   GIF version

Theorem squeeze0 12155
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 0re 11254 . . . 4 0 ∈ ℝ
2 leloe 11338 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 688 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 breq2 5156 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
5 breq2 5156 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
64, 5imbi12d 343 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
76rspcv 3607 . . . . 5 (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → (0 < 𝐴𝐴 < 𝐴)))
8 ltnr 11347 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98pm2.21d 121 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 𝐴𝐴 = 0))
109com12 32 . . . . . . 7 (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))
1110imim2i 16 . . . . . 6 ((0 < 𝐴𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)))
1211com13 88 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴𝐴 < 𝐴) → 𝐴 = 0)))
137, 12syl5d 73 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
14 ax-1 6 . . . . . 6 (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1514eqcoms 2736 . . . . 5 (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1615a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
1713, 16jaod 857 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
183, 17sylbid 239 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
19183imp 1108 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845  w3a 1084   = wceq 1533  wcel 2098  wral 3058   class class class wbr 5152  cr 11145  0cc0 11146   < clt 11286  cle 11287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-addrcl 11207  ax-rnegex 11217  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator