![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > squeeze0 | Structured version Visualization version GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11254 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | leloe 11338 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
4 | breq2 5156 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
5 | breq2 5156 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
6 | 4, 5 | imbi12d 343 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
7 | 6 | rspcv 3607 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → (0 < 𝐴 → 𝐴 < 𝐴))) |
8 | ltnr 11347 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
9 | 8 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 → 𝐴 = 0)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)) |
11 | 10 | imim2i 16 | . . . . . 6 ⊢ ((0 < 𝐴 → 𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))) |
12 | 11 | com13 88 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴 → 𝐴 < 𝐴) → 𝐴 = 0))) |
13 | 7, 12 | syl5d 73 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
14 | ax-1 6 | . . . . . 6 ⊢ (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) | |
15 | 14 | eqcoms 2736 | . . . . 5 ⊢ (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
17 | 13, 16 | jaod 857 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
18 | 3, 17 | sylbid 239 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
19 | 18 | 3imp 1108 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 class class class wbr 5152 ℝcr 11145 0cc0 11146 < clt 11286 ≤ cle 11287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-addrcl 11207 ax-rnegex 11217 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |