![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > squeeze0 | Structured version Visualization version GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11215 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | leloe 11299 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
4 | breq2 5152 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
5 | breq2 5152 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
7 | 6 | rspcv 3608 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → (0 < 𝐴 → 𝐴 < 𝐴))) |
8 | ltnr 11308 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
9 | 8 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 → 𝐴 = 0)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)) |
11 | 10 | imim2i 16 | . . . . . 6 ⊢ ((0 < 𝐴 → 𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))) |
12 | 11 | com13 88 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴 → 𝐴 < 𝐴) → 𝐴 = 0))) |
13 | 7, 12 | syl5d 73 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
14 | ax-1 6 | . . . . . 6 ⊢ (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) | |
15 | 14 | eqcoms 2740 | . . . . 5 ⊢ (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
17 | 13, 16 | jaod 857 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
18 | 3, 17 | sylbid 239 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
19 | 18 | 3imp 1111 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5148 ℝcr 11108 0cc0 11109 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-addrcl 11170 ax-rnegex 11180 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |