MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  squeeze0 Structured version   Visualization version   GIF version

Theorem squeeze0 11867
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 0re 10966 . . . 4 0 ∈ ℝ
2 leloe 11050 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 687 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 breq2 5079 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
5 breq2 5079 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
64, 5imbi12d 345 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
76rspcv 3556 . . . . 5 (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → (0 < 𝐴𝐴 < 𝐴)))
8 ltnr 11059 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98pm2.21d 121 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 𝐴𝐴 = 0))
109com12 32 . . . . . . 7 (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))
1110imim2i 16 . . . . . 6 ((0 < 𝐴𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)))
1211com13 88 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴𝐴 < 𝐴) → 𝐴 = 0)))
137, 12syl5d 73 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
14 ax-1 6 . . . . . 6 (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1514eqcoms 2746 . . . . 5 (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1615a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
1713, 16jaod 856 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
183, 17sylbid 239 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
19183imp 1110 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5075  cr 10859  0cc0 10860   < clt 10998  cle 10999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-resscn 10917  ax-1cn 10918  ax-addrcl 10921  ax-rnegex 10931  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5486  df-po 5500  df-so 5501  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-er 8487  df-en 8723  df-dom 8724  df-sdom 8725  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator