MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  squeeze0 Structured version   Visualization version   GIF version

Theorem squeeze0 11537
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 0re 10637 . . . 4 0 ∈ ℝ
2 leloe 10721 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 686 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 breq2 5067 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
5 breq2 5067 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
64, 5imbi12d 346 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
76rspcv 3622 . . . . 5 (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → (0 < 𝐴𝐴 < 𝐴)))
8 ltnr 10729 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98pm2.21d 121 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 𝐴𝐴 = 0))
109com12 32 . . . . . . 7 (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))
1110imim2i 16 . . . . . 6 ((0 < 𝐴𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)))
1211com13 88 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴𝐴 < 𝐴) → 𝐴 = 0)))
137, 12syl5d 73 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
14 ax-1 6 . . . . . 6 (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1514eqcoms 2834 . . . . 5 (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1615a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
1713, 16jaod 855 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
183, 17sylbid 241 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
19183imp 1105 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wo 843  w3a 1081   = wceq 1530  wcel 2107  wral 3143   class class class wbr 5063  cr 10530  0cc0 10531   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-addrcl 10592  ax-rnegex 10602  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator