Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > squeeze0 | Structured version Visualization version GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | leloe 10992 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
4 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
5 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
6 | 4, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
7 | 6 | rspcv 3547 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → (0 < 𝐴 → 𝐴 < 𝐴))) |
8 | ltnr 11000 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
9 | 8 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 → 𝐴 = 0)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)) |
11 | 10 | imim2i 16 | . . . . . 6 ⊢ ((0 < 𝐴 → 𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))) |
12 | 11 | com13 88 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴 → 𝐴 < 𝐴) → 𝐴 = 0))) |
13 | 7, 12 | syl5d 73 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
14 | ax-1 6 | . . . . . 6 ⊢ (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) | |
15 | 14 | eqcoms 2746 | . . . . 5 ⊢ (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
17 | 13, 16 | jaod 855 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
18 | 3, 17 | sylbid 239 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
19 | 18 | 3imp 1109 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |