MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnrd Structured version   Visualization version   GIF version

Theorem ltnrd 11392
Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltnrd (𝜑 → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnrd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnr 11353 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2syl 17 1 (𝜑 → ¬ 𝐴 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105   class class class wbr 5147  cr 11151   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297
This theorem is referenced by:  zbtwnre  12985  fzonel  13709  rlimuni  15582  climuni  15584  prmreclem6  16954  ivthlem2  25500  ivthlem3  25501  iundisj  25596  ovolioo  25616  itgsplitioo  25887  iundisjf  32608  ubico  32783  iundisjfi  32803  erdszelem4  35178  poimirlem1  37607  poimirlem27  37633  aks4d1p5  42061  unitscyglem4  42179  sqrtcval  43630  limclner  45606
  Copyright terms: Public domain W3C validator