MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubel Structured version   Visualization version   GIF version

Theorem lubel 18524
Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubel ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → 𝑋 (𝑈𝑆))

Proof of Theorem lubel
StepHypRef Expression
1 clatl 18518 . . . 4 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
2 ssel 3952 . . . . 5 (𝑆𝐵 → (𝑋𝑆𝑋𝐵))
32impcom 407 . . . 4 ((𝑋𝑆𝑆𝐵) → 𝑋𝐵)
4 lublem.b . . . . 5 𝐵 = (Base‘𝐾)
5 lublem.u . . . . 5 𝑈 = (lub‘𝐾)
64, 5lubsn 18492 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑈‘{𝑋}) = 𝑋)
71, 3, 6syl2an 596 . . 3 ((𝐾 ∈ CLat ∧ (𝑋𝑆𝑆𝐵)) → (𝑈‘{𝑋}) = 𝑋)
873impb 1114 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → (𝑈‘{𝑋}) = 𝑋)
9 snssi 4784 . . . 4 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
10 lublem.l . . . . 5 = (le‘𝐾)
114, 10, 5lubss 18523 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ {𝑋} ⊆ 𝑆) → (𝑈‘{𝑋}) (𝑈𝑆))
129, 11syl3an3 1165 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝑈‘{𝑋}) (𝑈𝑆))
13123com23 1126 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → (𝑈‘{𝑋}) (𝑈𝑆))
148, 13eqbrtrrd 5143 1 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → 𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  {csn 4601   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  lubclub 18321  Latclat 18441  CLatccla 18508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442  df-clat 18509
This theorem is referenced by:  lubun  18525  atlatmstc  39337  2polssN  39934
  Copyright terms: Public domain W3C validator