| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubel | Structured version Visualization version GIF version | ||
| Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublem.l | ⊢ ≤ = (le‘𝐾) |
| lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubel | ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatl 18518 | . . . 4 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) | |
| 2 | ssel 3952 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵)) | |
| 3 | 2 | impcom 407 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ∈ 𝐵) |
| 4 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 6 | 4, 5 | lubsn 18492 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
| 7 | 1, 3, 6 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵)) → (𝑈‘{𝑋}) = 𝑋) |
| 8 | 7 | 3impb 1114 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
| 9 | snssi 4784 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
| 10 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 11 | 4, 10, 5 | lubss 18523 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝑆) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
| 12 | 9, 11 | syl3an3 1165 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
| 13 | 12 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
| 14 | 8, 13 | eqbrtrrd 5143 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 lubclub 18321 Latclat 18441 CLatccla 18508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-lat 18442 df-clat 18509 |
| This theorem is referenced by: lubun 18525 atlatmstc 39337 2polssN 39934 |
| Copyright terms: Public domain | W3C validator |