MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel Structured version   Visualization version   GIF version

Theorem metuel 23626
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 8-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuel ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
Distinct variable groups:   𝑤,𝑎,𝐷   𝑋,𝑎   𝑤,𝑉
Allowed substitution hints:   𝑉(𝑎)   𝑋(𝑤)

Proof of Theorem metuel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 metuval 23611 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
21adantl 481 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
32eleq2d 2824 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ 𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))))
4 oveq2 7263 . . . . . . 7 (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒))
54imaeq2d 5958 . . . . . 6 (𝑎 = 𝑒 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑒)))
65cbvmptv 5183 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
76rneqi 5835 . . . 4 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
87metustfbas 23619 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
9 elfg 22930 . . 3 (ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
108, 9syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
113, 10bitrd 278 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cima 5583  cfv 6418  (class class class)co 7255  0cc0 10802  +crp 12659  [,)cico 13010  PsMetcpsmet 20494  fBascfbas 20498  filGencfg 20499  metUnifcmetu 20501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-rp 12660  df-ico 13014  df-psmet 20502  df-fbas 20507  df-fg 20508  df-metu 20509
This theorem is referenced by:  metuel2  23627  metustbl  23628  restmetu  23632
  Copyright terms: Public domain W3C validator