MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel Structured version   Visualization version   GIF version

Theorem metuel 22788
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 8-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuel ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
Distinct variable groups:   𝑤,𝑎,𝐷   𝑋,𝑎   𝑤,𝑉
Allowed substitution hints:   𝑉(𝑎)   𝑋(𝑤)

Proof of Theorem metuel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 metuval 22773 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
21adantl 475 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
32eleq2d 2845 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ 𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))))
4 oveq2 6932 . . . . . . 7 (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒))
54imaeq2d 5722 . . . . . 6 (𝑎 = 𝑒 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑒)))
65cbvmptv 4987 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
76rneqi 5599 . . . 4 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
87metustfbas 22781 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
9 elfg 22094 . . 3 (ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
108, 9syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
113, 10bitrd 271 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wrex 3091  wss 3792  c0 4141  cmpt 4967   × cxp 5355  ccnv 5356  ran crn 5358  cima 5360  cfv 6137  (class class class)co 6924  0cc0 10274  +crp 12142  [,)cico 12494  PsMetcpsmet 20137  fBascfbas 20141  filGencfg 20142  metUnifcmetu 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-rp 12143  df-ico 12498  df-psmet 20145  df-fbas 20150  df-fg 20151  df-metu 20152
This theorem is referenced by:  metuel2  22789  metustbl  22790  restmetu  22794
  Copyright terms: Public domain W3C validator