MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel Structured version   Visualization version   GIF version

Theorem metuel 24072
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 8-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuel ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝑉 ∈ (metUnifβ€˜π·) ↔ (𝑉 βŠ† (𝑋 Γ— 𝑋) ∧ βˆƒπ‘€ ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))𝑀 βŠ† 𝑉)))
Distinct variable groups:   𝑀,π‘Ž,𝐷   𝑋,π‘Ž   𝑀,𝑉
Allowed substitution hints:   𝑉(π‘Ž)   𝑋(𝑀)

Proof of Theorem metuel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 metuval 24057 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (metUnifβ€˜π·) = ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))))
21adantl 482 . . 3 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (metUnifβ€˜π·) = ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))))
32eleq2d 2819 . 2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝑉 ∈ (metUnifβ€˜π·) ↔ 𝑉 ∈ ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))))))
4 oveq2 7416 . . . . . . 7 (π‘Ž = 𝑒 β†’ (0[,)π‘Ž) = (0[,)𝑒))
54imaeq2d 6059 . . . . . 6 (π‘Ž = 𝑒 β†’ (◑𝐷 β€œ (0[,)π‘Ž)) = (◑𝐷 β€œ (0[,)𝑒)))
65cbvmptv 5261 . . . . 5 (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) = (𝑒 ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)𝑒)))
76rneqi 5936 . . . 4 ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) = ran (𝑒 ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)𝑒)))
87metustfbas 24065 . . 3 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) ∈ (fBasβ€˜(𝑋 Γ— 𝑋)))
9 elfg 23374 . . 3 (ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) ∈ (fBasβ€˜(𝑋 Γ— 𝑋)) β†’ (𝑉 ∈ ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))) ↔ (𝑉 βŠ† (𝑋 Γ— 𝑋) ∧ βˆƒπ‘€ ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))𝑀 βŠ† 𝑉)))
108, 9syl 17 . 2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝑉 ∈ ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))) ↔ (𝑉 βŠ† (𝑋 Γ— 𝑋) ∧ βˆƒπ‘€ ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))𝑀 βŠ† 𝑉)))
113, 10bitrd 278 1 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝑉 ∈ (metUnifβ€˜π·) ↔ (𝑉 βŠ† (𝑋 Γ— 𝑋) ∧ βˆƒπ‘€ ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))𝑀 βŠ† 𝑉)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   βŠ† wss 3948  βˆ…c0 4322   ↦ cmpt 5231   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7408  0cc0 11109  β„+crp 12973  [,)cico 13325  PsMetcpsmet 20927  fBascfbas 20931  filGencfg 20932  metUnifcmetu 20934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-rp 12974  df-ico 13329  df-psmet 20935  df-fbas 20940  df-fg 20941  df-metu 20942
This theorem is referenced by:  metuel2  24073  metustbl  24074  restmetu  24078
  Copyright terms: Public domain W3C validator