Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuust Structured version   Visualization version   GIF version

Theorem metuust 23262
 Description: The uniform structure generated by metric 𝐷 is a uniform structure. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuust ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))

Proof of Theorem metuust
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuval 23251 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
21adantl 485 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
3 oveq2 7158 . . . . . 6 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
43imaeq2d 5901 . . . . 5 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
54cbvmptv 5135 . . . 4 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
65rneqi 5778 . . 3 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
76metust 23260 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋))
82, 7eqeltrd 2852 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∅c0 4225   ↦ cmpt 5112   × cxp 5522  ◡ccnv 5523  ran crn 5525   “ cima 5527  ‘cfv 6335  (class class class)co 7150  0cc0 10575  ℝ+crp 12430  [,)cico 12781  PsMetcpsmet 20150  filGencfg 20155  metUnifcmetu 20157  UnifOncust 22900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-2 11737  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ico 12785  df-psmet 20158  df-fbas 20163  df-fg 20164  df-metu 20165  df-fil 22546  df-ust 22901 This theorem is referenced by:  psmetutop  23269  xmsusp  23271  cmetcusp  24054  cnflduss  24056
 Copyright terms: Public domain W3C validator