| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metuust | Structured version Visualization version GIF version | ||
| Description: The uniform structure generated by metric 𝐷 is a uniform structure. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metuust | ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuval 24462 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| 3 | oveq2 7354 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) | |
| 4 | 3 | imaeq2d 6009 | . . . . 5 ⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 5 | 4 | cbvmptv 5195 | . . . 4 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 6 | 5 | rneqi 5877 | . . 3 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 7 | 6 | metust 24471 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋)) |
| 8 | 2, 7 | eqeltrd 2831 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ↦ cmpt 5172 × cxp 5614 ◡ccnv 5615 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℝ+crp 12887 [,)cico 13244 PsMetcpsmet 21273 filGencfg 21278 metUnifcmetu 21280 UnifOncust 24113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ico 13248 df-psmet 21281 df-fbas 21286 df-fg 21287 df-metu 21288 df-fil 23759 df-ust 24114 |
| This theorem is referenced by: psmetutop 24480 xmsusp 24482 cmetcusp 25279 cnflduss 25281 |
| Copyright terms: Public domain | W3C validator |