Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metuust | Structured version Visualization version GIF version |
Description: The uniform structure generated by metric 𝐷 is a uniform structure. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metuust | ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metuval 23251 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) | |
2 | 1 | adantl 485 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
3 | oveq2 7158 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) | |
4 | 3 | imaeq2d 5901 | . . . . 5 ⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
5 | 4 | cbvmptv 5135 | . . . 4 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
6 | 5 | rneqi 5778 | . . 3 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
7 | 6 | metust 23260 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋)) |
8 | 2, 7 | eqeltrd 2852 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∅c0 4225 ↦ cmpt 5112 × cxp 5522 ◡ccnv 5523 ran crn 5525 “ cima 5527 ‘cfv 6335 (class class class)co 7150 0cc0 10575 ℝ+crp 12430 [,)cico 12781 PsMetcpsmet 20150 filGencfg 20155 metUnifcmetu 20157 UnifOncust 22900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-2 11737 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ico 12785 df-psmet 20158 df-fbas 20163 df-fg 20164 df-metu 20165 df-fil 22546 df-ust 22901 |
This theorem is referenced by: psmetutop 23269 xmsusp 23271 cmetcusp 24054 cnflduss 24056 |
Copyright terms: Public domain | W3C validator |