MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil2 Structured version   Visualization version   GIF version

Theorem cfilucfil2 23823
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 24535. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
cfilucfil2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ (𝐢 ∈ (fBasβ€˜π‘‹) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝐢 (𝐷 β€œ (𝑦 Γ— 𝑦)) βŠ† (0[,)π‘₯))))
Distinct variable groups:   π‘₯,𝑦,𝐢   π‘₯,𝐷,𝑦   π‘₯,𝑋,𝑦

Proof of Theorem cfilucfil2
Dummy variables 𝑏 π‘Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuval 23811 . . . . 5 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (metUnifβ€˜π·) = ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))))
21adantl 482 . . . 4 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (metUnifβ€˜π·) = ((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))))
32fveq2d 6829 . . 3 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (CauFiluβ€˜(metUnifβ€˜π·)) = (CauFiluβ€˜((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))))))
43eleq2d 2822 . 2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ 𝐢 ∈ (CauFiluβ€˜((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))))))
5 oveq2 7345 . . . . . 6 (π‘Ž = 𝑏 β†’ (0[,)π‘Ž) = (0[,)𝑏))
65imaeq2d 5999 . . . . 5 (π‘Ž = 𝑏 β†’ (◑𝐷 β€œ (0[,)π‘Ž)) = (◑𝐷 β€œ (0[,)𝑏)))
76cbvmptv 5205 . . . 4 (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) = (𝑏 ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)𝑏)))
87rneqi 5878 . . 3 ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) = ran (𝑏 ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)𝑏)))
98cfilucfil 23821 . 2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜((𝑋 Γ— 𝑋)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))))) ↔ (𝐢 ∈ (fBasβ€˜π‘‹) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝐢 (𝐷 β€œ (𝑦 Γ— 𝑦)) βŠ† (0[,)π‘₯))))
104, 9bitrd 278 1 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (PsMetβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ (𝐢 ∈ (fBasβ€˜π‘‹) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝐢 (𝐷 β€œ (𝑦 Γ— 𝑦)) βŠ† (0[,)π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1540   ∈ wcel 2105   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3898  βˆ…c0 4269   ↦ cmpt 5175   Γ— cxp 5618  β—‘ccnv 5619  ran crn 5621   β€œ cima 5623  β€˜cfv 6479  (class class class)co 7337  0cc0 10972  β„+crp 12831  [,)cico 13182  PsMetcpsmet 20687  fBascfbas 20691  filGencfg 20692  metUnifcmetu 20694  CauFiluccfilu 23544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-2 12137  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ico 13186  df-psmet 20695  df-fbas 20700  df-fg 20701  df-metu 20702  df-fil 23103  df-ust 23458  df-cfilu 23545
This theorem is referenced by:  cfilucfil3  24590  cmetcusp  24624
  Copyright terms: Public domain W3C validator