![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirhl2 | Structured version Visualization version GIF version |
Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirhl.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirhl.k | ⊢ 𝐾 = (hlG‘𝐺) |
mirhl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirhl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirhl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirhl.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirhl2.1 | ⊢ (𝜑 → 𝑋 ≠ 𝐴) |
mirhl2.2 | ⊢ (𝜑 → 𝑌 ≠ 𝐴) |
mirhl2.3 | ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) |
Ref | Expression |
---|---|
mirhl2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirhl2.1 | . 2 ⊢ (𝜑 → 𝑋 ≠ 𝐴) | |
2 | mirhl2.2 | . 2 ⊢ (𝜑 → 𝑌 ≠ 𝐴) | |
3 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
7 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirhl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | mirhl.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | mirhl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
12 | 3, 6, 4, 7, 8, 5, 9, 10, 11 | mircl 27891 | . . 3 ⊢ (𝜑 → (𝑀‘𝑌) ∈ 𝑃) |
13 | mirhl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
14 | 3, 6, 4, 7, 8, 5, 9, 10, 11, 2 | mirne 27897 | . . 3 ⊢ (𝜑 → (𝑀‘𝑌) ≠ 𝐴) |
15 | mirhl2.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) | |
16 | 3, 6, 4, 5, 13, 9, 12, 15 | tgbtwncom 27718 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝑌)𝐼𝑋)) |
17 | 3, 6, 4, 7, 8, 5, 9, 10, 11 | mirbtwn 27888 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝑌)𝐼𝑌)) |
18 | 3, 4, 5, 12, 9, 13, 11, 14, 16, 17 | tgbtwnconn2 27806 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋))) |
19 | mirhl.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
20 | 3, 4, 19, 13, 11, 9, 5 | ishlg 27832 | . 2 ⊢ (𝜑 → (𝑋(𝐾‘𝐴)𝑌 ↔ (𝑋 ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋))))) |
21 | 1, 2, 18, 20 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5146 ‘cfv 6539 (class class class)co 7403 Basecbs 17139 distcds 17201 TarskiGcstrkg 27657 Itvcitv 27663 LineGclng 27664 hlGchlg 27830 pInvGcmir 27882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-oadd 8464 df-er 8698 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-3 12271 df-n0 12468 df-xnn0 12540 df-z 12554 df-uz 12818 df-fz 13480 df-fzo 13623 df-hash 14286 df-word 14460 df-concat 14516 df-s1 14541 df-s2 14794 df-s3 14795 df-trkgc 27678 df-trkgb 27679 df-trkgcb 27680 df-trkg 27683 df-cgrg 27741 df-hlg 27831 df-mir 27883 |
This theorem is referenced by: colhp 28000 sacgr 28061 |
Copyright terms: Public domain | W3C validator |