MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircinv Structured version   Visualization version   GIF version

Theorem mircinv 26933
Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mircinv (𝜑 → (𝑀𝐴) = 𝐴)

Proof of Theorem mircinv
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 mirval.p . . 3 𝑃 = (Base‘𝐺)
3 mirval.d . . 3 = (dist‘𝐺)
4 mirval.i . . 3 𝐼 = (Itv‘𝐺)
5 mirval.l . . 3 𝐿 = (LineG‘𝐺)
6 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
7 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . 3 (𝜑𝐴𝑃)
9 mirfv.m . . 3 𝑀 = (𝑆𝐴)
102, 3, 4, 5, 6, 7, 8, 9, 8mirinv 26931 . 2 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
111, 10mpbiri 257 1 (𝜑 → (𝑀𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirln  26941  mirconn  26943  mirbtwnhl  26945  midexlem  26957  ragtrivb  26967  colperpexlem1  26995  colperpexlem3  26997  midex  27002  lmieu  27049
  Copyright terms: Public domain W3C validator