MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircinv Structured version   Visualization version   GIF version

Theorem mircinv 28647
Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mircinv (𝜑 → (𝑀𝐴) = 𝐴)

Proof of Theorem mircinv
StepHypRef Expression
1 eqid 2735 . 2 𝐴 = 𝐴
2 mirval.p . . 3 𝑃 = (Base‘𝐺)
3 mirval.d . . 3 = (dist‘𝐺)
4 mirval.i . . 3 𝐼 = (Itv‘𝐺)
5 mirval.l . . 3 𝐿 = (LineG‘𝐺)
6 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
7 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . 3 (𝜑𝐴𝑃)
9 mirfv.m . . 3 𝑀 = (𝑆𝐴)
102, 3, 4, 5, 6, 7, 8, 9, 8mirinv 28645 . 2 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
111, 10mpbiri 258 1 (𝜑 → (𝑀𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-mir 28632
This theorem is referenced by:  mirln  28655  mirconn  28657  mirbtwnhl  28659  midexlem  28671  ragtrivb  28681  colperpexlem1  28709  colperpexlem3  28711  midex  28716  lmieu  28763
  Copyright terms: Public domain W3C validator