MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircinv Structured version   Visualization version   GIF version

Theorem mircinv 28631
Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mircinv (𝜑 → (𝑀𝐴) = 𝐴)

Proof of Theorem mircinv
StepHypRef Expression
1 eqid 2729 . 2 𝐴 = 𝐴
2 mirval.p . . 3 𝑃 = (Base‘𝐺)
3 mirval.d . . 3 = (dist‘𝐺)
4 mirval.i . . 3 𝐼 = (Itv‘𝐺)
5 mirval.l . . 3 𝐿 = (LineG‘𝐺)
6 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
7 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . 3 (𝜑𝐴𝑃)
9 mirfv.m . . 3 𝑀 = (𝑆𝐴)
102, 3, 4, 5, 6, 7, 8, 9, 8mirinv 28629 . 2 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
111, 10mpbiri 258 1 (𝜑 → (𝑀𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397  pInvGcmir 28615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-mir 28616
This theorem is referenced by:  mirln  28639  mirconn  28641  mirbtwnhl  28643  midexlem  28655  ragtrivb  28665  colperpexlem1  28693  colperpexlem3  28695  midex  28700  lmieu  28747
  Copyright terms: Public domain W3C validator