Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirmot Structured version   Visualization version   GIF version

Theorem mirmot 26475
 Description: Point investion is a motion of the geometric space. Theorem 7.14 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirmot.m 𝑀 = (𝑆𝐴)
mirmot.a (𝜑𝐴𝑃)
Assertion
Ref Expression
mirmot (𝜑𝑀 ∈ (𝐺Ismt𝐺))

Proof of Theorem mirmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirmot.a . . 3 (𝜑𝐴𝑃)
8 mirmot.m . . 3 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf1o 26469 . 2 (𝜑𝑀:𝑃1-1-onto𝑃)
106adantr 484 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺 ∈ TarskiG)
117adantr 484 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐴𝑃)
12 simprl 770 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
13 simprr 772 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
141, 2, 3, 4, 5, 10, 11, 8, 12, 13miriso 26470 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))
1514ralrimivva 3186 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))
161, 2ismot 26335 . . 3 (𝐺 ∈ TarskiG → (𝑀 ∈ (𝐺Ismt𝐺) ↔ (𝑀:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))))
176, 16syl 17 . 2 (𝜑 → (𝑀 ∈ (𝐺Ismt𝐺) ↔ (𝑀:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))))
189, 15, 17mpbir2and 712 1 (𝜑𝑀 ∈ (𝐺Ismt𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  –1-1-onto→wf1o 6342  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  distcds 16574  TarskiGcstrkg 26230  Itvcitv 26236  LineGclng 26237  Ismtcismt 26332  pInvGcmir 26452 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-hash 13696  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253  df-ismt 26333  df-mir 26453 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator