![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirmot | Structured version Visualization version GIF version |
Description: Point investion is a motion of the geometric space. Theorem 7.14 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirmot.m | β’ π = (πβπ΄) |
mirmot.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
mirmot | β’ (π β π β (πΊIsmtπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 β’ π = (BaseβπΊ) | |
2 | mirval.d | . . 3 β’ β = (distβπΊ) | |
3 | mirval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . . 3 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | mirmot.a | . . 3 β’ (π β π΄ β π) | |
8 | mirmot.m | . . 3 β’ π = (πβπ΄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf1o 28354 | . 2 β’ (π β π:πβ1-1-ontoβπ) |
10 | 6 | adantr 480 | . . . 4 β’ ((π β§ (π β π β§ π β π)) β πΊ β TarskiG) |
11 | 7 | adantr 480 | . . . 4 β’ ((π β§ (π β π β§ π β π)) β π΄ β π) |
12 | simprl 768 | . . . 4 β’ ((π β§ (π β π β§ π β π)) β π β π) | |
13 | simprr 770 | . . . 4 β’ ((π β§ (π β π β§ π β π)) β π β π) | |
14 | 1, 2, 3, 4, 5, 10, 11, 8, 12, 13 | miriso 28355 | . . 3 β’ ((π β§ (π β π β§ π β π)) β ((πβπ) β (πβπ)) = (π β π)) |
15 | 14 | ralrimivva 3199 | . 2 β’ (π β βπ β π βπ β π ((πβπ) β (πβπ)) = (π β π)) |
16 | 1, 2 | ismot 28220 | . . 3 β’ (πΊ β TarskiG β (π β (πΊIsmtπΊ) β (π:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πβπ) β (πβπ)) = (π β π)))) |
17 | 6, 16 | syl 17 | . 2 β’ (π β (π β (πΊIsmtπΊ) β (π:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πβπ) β (πβπ)) = (π β π)))) |
18 | 9, 15, 17 | mpbir2and 710 | 1 β’ (π β π β (πΊIsmtπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 Basecbs 17151 distcds 17213 TarskiGcstrkg 28112 Itvcitv 28118 LineGclng 28119 Ismtcismt 28217 pInvGcmir 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-fz 13492 df-hash 14298 df-trkgc 28133 df-trkgb 28134 df-trkgcb 28135 df-trkg 28138 df-ismt 28218 df-mir 28338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |