MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirne Structured version   Visualization version   GIF version

Theorem mirne 28676
Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
mirne.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
mirne (𝜑 → (𝑀𝐵) ≠ 𝐴)

Proof of Theorem mirne
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐵) = 𝐴)
21fveq2d 6909 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = (𝑀𝐴))
3 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 mirval.d . . . . . 6 = (dist‘𝐺)
5 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . . . . 6 (𝜑𝐴𝑃)
10 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
11 mirinv.b . . . . . 6 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 28671 . . . . 5 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
1312adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = 𝐵)
14 eqid 2736 . . . . . 6 𝐴 = 𝐴
153, 4, 5, 6, 7, 8, 9, 10, 9mirinv 28675 . . . . . 6 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
1614, 15mpbiri 258 . . . . 5 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐴) = 𝐴)
182, 13, 173eqtr3d 2784 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵 = 𝐴)
19 mirne.1 . . . . 5 (𝜑𝐵𝐴)
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵𝐴)
2120neneqd 2944 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → ¬ 𝐵 = 𝐴)
2218, 21pm2.65da 816 . 2 (𝜑 → ¬ (𝑀𝐵) = 𝐴)
2322neqned 2946 1 (𝜑 → (𝑀𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  cfv 6560  Basecbs 17248  distcds 17307  TarskiGcstrkg 28436  Itvcitv 28442  LineGclng 28443  pInvGcmir 28661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-trkgc 28457  df-trkgb 28458  df-trkgcb 28459  df-trkg 28462  df-mir 28662
This theorem is referenced by:  mirhl2  28690  sacgr  28840
  Copyright terms: Public domain W3C validator