![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirne | Structured version Visualization version GIF version |
Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirne.1 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
mirne | ⊢ (𝜑 → (𝑀‘𝐵) ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘𝐵) = 𝐴) | |
2 | 1 | fveq2d 6497 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐴)) |
3 | mirval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
5 | mirval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | mirval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | mirinv.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 26144 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
13 | 12 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
14 | eqid 2772 | . . . . . 6 ⊢ 𝐴 = 𝐴 | |
15 | 3, 4, 5, 6, 7, 8, 9, 10, 9 | mirinv 26148 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 = 𝐴)) |
16 | 14, 15 | mpbiri 250 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐴) |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘𝐴) = 𝐴) |
18 | 2, 13, 17 | 3eqtr3d 2816 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → 𝐵 = 𝐴) |
19 | mirne.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
20 | 19 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → 𝐵 ≠ 𝐴) |
21 | 20 | neneqd 2966 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → ¬ 𝐵 = 𝐴) |
22 | 18, 21 | pm2.65da 804 | . 2 ⊢ (𝜑 → ¬ (𝑀‘𝐵) = 𝐴) |
23 | 22 | neqned 2968 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2961 ‘cfv 6182 Basecbs 16333 distcds 16424 TarskiGcstrkg 25912 Itvcitv 25918 LineGclng 25919 pInvGcmir 26134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-trkgc 25930 df-trkgb 25931 df-trkgcb 25932 df-trkg 25935 df-mir 26135 |
This theorem is referenced by: mirhl2 26163 sacgr 26313 sacgrOLD 26314 |
Copyright terms: Public domain | W3C validator |