MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirne Structured version   Visualization version   GIF version

Theorem mirne 27907
Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
mirne.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
mirne (𝜑 → (𝑀𝐵) ≠ 𝐴)

Proof of Theorem mirne
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐵) = 𝐴)
21fveq2d 6892 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = (𝑀𝐴))
3 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 mirval.d . . . . . 6 = (dist‘𝐺)
5 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . . . . 6 (𝜑𝐴𝑃)
10 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
11 mirinv.b . . . . . 6 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 27902 . . . . 5 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
1312adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = 𝐵)
14 eqid 2732 . . . . . 6 𝐴 = 𝐴
153, 4, 5, 6, 7, 8, 9, 10, 9mirinv 27906 . . . . . 6 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
1614, 15mpbiri 257 . . . . 5 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐴) = 𝐴)
182, 13, 173eqtr3d 2780 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵 = 𝐴)
19 mirne.1 . . . . 5 (𝜑𝐵𝐴)
2019adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵𝐴)
2120neneqd 2945 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → ¬ 𝐵 = 𝐴)
2218, 21pm2.65da 815 . 2 (𝜑 → ¬ (𝑀𝐵) = 𝐴)
2322neqned 2947 1 (𝜑 → (𝑀𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  cfv 6540  Basecbs 17140  distcds 17202  TarskiGcstrkg 27667  Itvcitv 27673  LineGclng 27674  pInvGcmir 27892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-trkgc 27688  df-trkgb 27689  df-trkgcb 27690  df-trkg 27693  df-mir 27893
This theorem is referenced by:  mirhl2  27921  sacgr  28071
  Copyright terms: Public domain W3C validator