Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirne | Structured version Visualization version GIF version |
Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirne.1 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
mirne | ⊢ (𝜑 → (𝑀‘𝐵) ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘𝐵) = 𝐴) | |
2 | 1 | fveq2d 6721 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐴)) |
3 | mirval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.d | . . . . . 6 ⊢ − = (dist‘𝐺) | |
5 | mirval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . . . . 6 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | mirval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | mirfv.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | mirinv.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 26753 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
14 | eqid 2737 | . . . . . 6 ⊢ 𝐴 = 𝐴 | |
15 | 3, 4, 5, 6, 7, 8, 9, 10, 9 | mirinv 26757 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 = 𝐴)) |
16 | 14, 15 | mpbiri 261 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐴) |
17 | 16 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → (𝑀‘𝐴) = 𝐴) |
18 | 2, 13, 17 | 3eqtr3d 2785 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → 𝐵 = 𝐴) |
19 | mirne.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
20 | 19 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → 𝐵 ≠ 𝐴) |
21 | 20 | neneqd 2945 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝐵) = 𝐴) → ¬ 𝐵 = 𝐴) |
22 | 18, 21 | pm2.65da 817 | . 2 ⊢ (𝜑 → ¬ (𝑀‘𝐵) = 𝐴) |
23 | 22 | neqned 2947 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ‘cfv 6380 Basecbs 16760 distcds 16811 TarskiGcstrkg 26521 Itvcitv 26527 LineGclng 26528 pInvGcmir 26743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-trkgc 26539 df-trkgb 26540 df-trkgcb 26541 df-trkg 26544 df-mir 26744 |
This theorem is referenced by: mirhl2 26772 sacgr 26922 |
Copyright terms: Public domain | W3C validator |