Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirne Structured version   Visualization version   GIF version

Theorem mirne 26471
 Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
mirne.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
mirne (𝜑 → (𝑀𝐵) ≠ 𝐴)

Proof of Theorem mirne
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐵) = 𝐴)
21fveq2d 6650 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = (𝑀𝐴))
3 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 mirval.d . . . . . 6 = (dist‘𝐺)
5 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . . . . 6 (𝜑𝐴𝑃)
10 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
11 mirinv.b . . . . . 6 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 26466 . . . . 5 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
1312adantr 484 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = 𝐵)
14 eqid 2798 . . . . . 6 𝐴 = 𝐴
153, 4, 5, 6, 7, 8, 9, 10, 9mirinv 26470 . . . . . 6 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
1614, 15mpbiri 261 . . . . 5 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 484 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐴) = 𝐴)
182, 13, 173eqtr3d 2841 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵 = 𝐴)
19 mirne.1 . . . . 5 (𝜑𝐵𝐴)
2019adantr 484 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵𝐴)
2120neneqd 2992 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → ¬ 𝐵 = 𝐴)
2218, 21pm2.65da 816 . 2 (𝜑 → ¬ (𝑀𝐵) = 𝐴)
2322neqned 2994 1 (𝜑 → (𝑀𝐵) ≠ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ‘cfv 6325  Basecbs 16478  distcds 16569  TarskiGcstrkg 26234  Itvcitv 26240  LineGclng 26241  pInvGcmir 26456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-trkgc 26252  df-trkgb 26253  df-trkgcb 26254  df-trkg 26257  df-mir 26457 This theorem is referenced by:  mirhl2  26485  sacgr  26635
 Copyright terms: Public domain W3C validator