Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatlem Structured version   Visualization version   GIF version

Theorem smatlem 31649
Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatlem.i (𝜑𝐼 ∈ ℕ)
smatlem.j (𝜑𝐽 ∈ ℕ)
smatlem.1 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
smatlem.2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
Assertion
Ref Expression
smatlem (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))

Proof of Theorem smatlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.s . . . . . 6 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 fz1ssnn 13216 . . . . . . . 8 (1...𝑀) ⊆ ℕ
3 smat.k . . . . . . . 8 (𝜑𝐾 ∈ (1...𝑀))
42, 3sselid 3915 . . . . . . 7 (𝜑𝐾 ∈ ℕ)
5 fz1ssnn 13216 . . . . . . . 8 (1...𝑁) ⊆ ℕ
6 smat.l . . . . . . . 8 (𝜑𝐿 ∈ (1...𝑁))
75, 6sselid 3915 . . . . . . 7 (𝜑𝐿 ∈ ℕ)
8 smat.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
9 smatfval 31647 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
104, 7, 8, 9syl3anc 1369 . . . . . 6 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
111, 10syl5eq 2791 . . . . 5 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1211oveqd 7272 . . . 4 (𝜑 → (𝐼𝑆𝐽) = (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽))
13 df-ov 7258 . . . 4 (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩)
1412, 13eqtrdi 2795 . . 3 (𝜑 → (𝐼𝑆𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩))
15 smatlem.i . . . . . . 7 (𝜑𝐼 ∈ ℕ)
16 smatlem.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
1715, 16jca 511 . . . . . 6 (𝜑 → (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
18 opelxp 5616 . . . . . 6 (⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ) ↔ (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
1917, 18sylibr 233 . . . . 5 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ))
20 eqid 2738 . . . . . 6 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
21 opex 5373 . . . . . 6 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
2220, 21dmmpo 7884 . . . . 5 dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (ℕ × ℕ)
2319, 22eleqtrrdi 2850 . . . 4 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2420mpofun 7376 . . . . 5 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
25 fvco 6848 . . . . 5 ((Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∧ ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2624, 25mpan 686 . . . 4 (⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2723, 26syl 17 . . 3 (𝜑 → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2814, 27eqtrd 2778 . 2 (𝜑 → (𝐼𝑆𝐽) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
29 df-ov 7258 . . . . 5 (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)
30 breq1 5073 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 < 𝐾𝐼 < 𝐾))
31 id 22 . . . . . . . . . 10 (𝑖 = 𝐼𝑖 = 𝐼)
32 oveq1 7262 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
3330, 31, 32ifbieq12d 4484 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)))
3433opeq1d 4807 . . . . . . . 8 (𝑖 = 𝐼 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
35 breq1 5073 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 < 𝐿𝐽 < 𝐿))
36 id 22 . . . . . . . . . 10 (𝑗 = 𝐽𝑗 = 𝐽)
37 oveq1 7262 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
3835, 36, 37ifbieq12d 4484 . . . . . . . . 9 (𝑗 = 𝐽 → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)))
3938opeq2d 4808 . . . . . . . 8 (𝑗 = 𝐽 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
40 opex 5373 . . . . . . . 8 ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ ∈ V
4134, 39, 20, 40ovmpo 7411 . . . . . . 7 ((𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ) → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
4217, 41syl 17 . . . . . 6 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
43 smatlem.1 . . . . . . 7 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
44 smatlem.2 . . . . . . 7 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
4543, 44opeq12d 4809 . . . . . 6 (𝜑 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ = ⟨𝑋, 𝑌⟩)
4642, 45eqtrd 2778 . . . . 5 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨𝑋, 𝑌⟩)
4729, 46eqtr3id 2793 . . . 4 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩) = ⟨𝑋, 𝑌⟩)
4847fveq2d 6760 . . 3 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝐴‘⟨𝑋, 𝑌⟩))
49 df-ov 7258 . . 3 (𝑋𝐴𝑌) = (𝐴‘⟨𝑋, 𝑌⟩)
5048, 49eqtr4di 2797 . 2 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝑋𝐴𝑌))
5128, 50eqtrd 2778 1 (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456  cop 4564   class class class wbr 5070   × cxp 5578  dom cdm 5580  ccom 5584  Fun wfun 6412  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  1c1 10803   + caddc 10805   < clt 10940  cn 11903  ...cfz 13168  subMat1csmat 31645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-z 12250  df-uz 12512  df-fz 13169  df-smat 31646
This theorem is referenced by:  smattl  31650  smattr  31651  smatbl  31652  smatbr  31653  1smat1  31656  madjusmdetlem3  31681
  Copyright terms: Public domain W3C validator