Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatlem Structured version   Visualization version   GIF version

Theorem smatlem 32378
Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
smatlem.i (𝜑𝐼 ∈ ℕ)
smatlem.j (𝜑𝐽 ∈ ℕ)
smatlem.1 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
smatlem.2 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
Assertion
Ref Expression
smatlem (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))

Proof of Theorem smatlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.s . . . . . 6 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
2 fz1ssnn 13472 . . . . . . . 8 (1...𝑀) ⊆ ℕ
3 smat.k . . . . . . . 8 (𝜑𝐾 ∈ (1...𝑀))
42, 3sselid 3942 . . . . . . 7 (𝜑𝐾 ∈ ℕ)
5 fz1ssnn 13472 . . . . . . . 8 (1...𝑁) ⊆ ℕ
6 smat.l . . . . . . . 8 (𝜑𝐿 ∈ (1...𝑁))
75, 6sselid 3942 . . . . . . 7 (𝜑𝐿 ∈ ℕ)
8 smat.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
9 smatfval 32376 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
104, 7, 8, 9syl3anc 1371 . . . . . 6 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
111, 10eqtrid 2788 . . . . 5 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1211oveqd 7374 . . . 4 (𝜑 → (𝐼𝑆𝐽) = (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽))
13 df-ov 7360 . . . 4 (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩)
1412, 13eqtrdi 2792 . . 3 (𝜑 → (𝐼𝑆𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩))
15 smatlem.i . . . . . . 7 (𝜑𝐼 ∈ ℕ)
16 smatlem.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
1715, 16jca 512 . . . . . 6 (𝜑 → (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
18 opelxp 5669 . . . . . 6 (⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ) ↔ (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ))
1917, 18sylibr 233 . . . . 5 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ (ℕ × ℕ))
20 eqid 2736 . . . . . 6 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
21 opex 5421 . . . . . 6 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
2220, 21dmmpo 8003 . . . . 5 dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (ℕ × ℕ)
2319, 22eleqtrrdi 2849 . . . 4 (𝜑 → ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
2420mpofun 7480 . . . . 5 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
25 fvco 6939 . . . . 5 ((Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) ∧ ⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2624, 25mpan 688 . . . 4 (⟨𝐼, 𝐽⟩ ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2723, 26syl 17 . . 3 (𝜑 → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))‘⟨𝐼, 𝐽⟩) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
2814, 27eqtrd 2776 . 2 (𝜑 → (𝐼𝑆𝐽) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)))
29 df-ov 7360 . . . . 5 (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)
30 breq1 5108 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 < 𝐾𝐼 < 𝐾))
31 id 22 . . . . . . . . . 10 (𝑖 = 𝐼𝑖 = 𝐼)
32 oveq1 7364 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
3330, 31, 32ifbieq12d 4514 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)))
3433opeq1d 4836 . . . . . . . 8 (𝑖 = 𝐼 → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
35 breq1 5108 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 < 𝐿𝐽 < 𝐿))
36 id 22 . . . . . . . . . 10 (𝑗 = 𝐽𝑗 = 𝐽)
37 oveq1 7364 . . . . . . . . . 10 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
3835, 36, 37ifbieq12d 4514 . . . . . . . . 9 (𝑗 = 𝐽 → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)))
3938opeq2d 4837 . . . . . . . 8 (𝑗 = 𝐽 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
40 opex 5421 . . . . . . . 8 ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ ∈ V
4134, 39, 20, 40ovmpo 7515 . . . . . . 7 ((𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ) → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
4217, 41syl 17 . . . . . 6 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩)
43 smatlem.1 . . . . . . 7 (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)
44 smatlem.2 . . . . . . 7 (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)
4543, 44opeq12d 4838 . . . . . 6 (𝜑 → ⟨if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))⟩ = ⟨𝑋, 𝑌⟩)
4642, 45eqtrd 2776 . . . . 5 (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)𝐽) = ⟨𝑋, 𝑌⟩)
4729, 46eqtr3id 2790 . . . 4 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩) = ⟨𝑋, 𝑌⟩)
4847fveq2d 6846 . . 3 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝐴‘⟨𝑋, 𝑌⟩))
49 df-ov 7360 . . 3 (𝑋𝐴𝑌) = (𝐴‘⟨𝑋, 𝑌⟩)
5048, 49eqtr4di 2794 . 2 (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨𝐼, 𝐽⟩)) = (𝑋𝐴𝑌))
5128, 50eqtrd 2776 1 (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4486  cop 4592   class class class wbr 5105   × cxp 5631  dom cdm 5633  ccom 5637  Fun wfun 6490  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  1c1 11052   + caddc 11054   < clt 11189  cn 12153  ...cfz 13424  subMat1csmat 32374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-z 12500  df-uz 12764  df-fz 13425  df-smat 32375
This theorem is referenced by:  smattl  32379  smattr  32380  smatbl  32381  smatbr  32382  1smat1  32385  madjusmdetlem3  32410
  Copyright terms: Public domain W3C validator