| Step | Hyp | Ref
| Expression |
| 1 | | smat.s |
. . . . . 6
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) |
| 2 | | fz1ssnn 13572 |
. . . . . . . 8
⊢
(1...𝑀) ⊆
ℕ |
| 3 | | smat.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) |
| 4 | 2, 3 | sselid 3956 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 5 | | fz1ssnn 13572 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
| 6 | | smat.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) |
| 7 | 5, 6 | sselid 3956 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 8 | | smat.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) |
| 9 | | smatfval 33826 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) |
| 10 | 4, 7, 8, 9 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) |
| 11 | 1, 10 | eqtrid 2782 |
. . . . 5
⊢ (𝜑 → 𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) |
| 12 | 11 | oveqd 7422 |
. . . 4
⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))𝐽)) |
| 13 | | df-ov 7408 |
. . . 4
⊢ (𝐼(𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))‘〈𝐼, 𝐽〉) |
| 14 | 12, 13 | eqtrdi 2786 |
. . 3
⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))‘〈𝐼, 𝐽〉)) |
| 15 | | smatlem.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 16 | | smatlem.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 17 | 15, 16 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ)) |
| 18 | | opelxp 5690 |
. . . . . 6
⊢
(〈𝐼, 𝐽〉 ∈ (ℕ ×
ℕ) ↔ (𝐼 ∈
ℕ ∧ 𝐽 ∈
ℕ)) |
| 19 | 17, 18 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 〈𝐼, 𝐽〉 ∈ (ℕ ×
ℕ)) |
| 20 | | eqid 2735 |
. . . . . 6
⊢ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) |
| 21 | | opex 5439 |
. . . . . 6
⊢
〈if(𝑖 <
𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉 ∈ V |
| 22 | 20, 21 | dmmpo 8070 |
. . . . 5
⊢ dom
(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) = (ℕ ×
ℕ) |
| 23 | 19, 22 | eleqtrrdi 2845 |
. . . 4
⊢ (𝜑 → 〈𝐼, 𝐽〉 ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) |
| 24 | 20 | mpofun 7531 |
. . . . 5
⊢ Fun
(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) |
| 25 | | fvco 6977 |
. . . . 5
⊢ ((Fun
(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) ∧ 〈𝐼, 𝐽〉 ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))‘〈𝐼, 𝐽〉) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉))) |
| 26 | 24, 25 | mpan 690 |
. . . 4
⊢
(〈𝐼, 𝐽〉 ∈ dom (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦
〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))‘〈𝐼, 𝐽〉) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉))) |
| 27 | 23, 26 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))‘〈𝐼, 𝐽〉) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉))) |
| 28 | 14, 27 | eqtrd 2770 |
. 2
⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉))) |
| 29 | | df-ov 7408 |
. . . . 5
⊢ (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)𝐽) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉) |
| 30 | | breq1 5122 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (𝑖 < 𝐾 ↔ 𝐼 < 𝐾)) |
| 31 | | id 22 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) |
| 32 | | oveq1 7412 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1)) |
| 33 | 30, 31, 32 | ifbieq12d 4529 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if(𝐼 < 𝐾, 𝐼, (𝐼 + 1))) |
| 34 | 33 | opeq1d 4855 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉 = 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉) |
| 35 | | breq1 5122 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (𝑗 < 𝐿 ↔ 𝐽 < 𝐿)) |
| 36 | | id 22 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) |
| 37 | | oveq1 7412 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1)) |
| 38 | 35, 36, 37 | ifbieq12d 4529 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))) |
| 39 | 38 | opeq2d 4856 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉 = 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))〉) |
| 40 | | opex 5439 |
. . . . . . . 8
⊢
〈if(𝐼 <
𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))〉 ∈ V |
| 41 | 34, 39, 20, 40 | ovmpo 7567 |
. . . . . . 7
⊢ ((𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ) → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)𝐽) = 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))〉) |
| 42 | 17, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)𝐽) = 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))〉) |
| 43 | | smatlem.1 |
. . . . . . 7
⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) |
| 44 | | smatlem.2 |
. . . . . . 7
⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) |
| 45 | 43, 44 | opeq12d 4857 |
. . . . . 6
⊢ (𝜑 → 〈if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)), if(𝐽 < 𝐿, 𝐽, (𝐽 + 1))〉 = 〈𝑋, 𝑌〉) |
| 46 | 42, 45 | eqtrd 2770 |
. . . . 5
⊢ (𝜑 → (𝐼(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)𝐽) = 〈𝑋, 𝑌〉) |
| 47 | 29, 46 | eqtr3id 2784 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉) = 〈𝑋, 𝑌〉) |
| 48 | 47 | fveq2d 6880 |
. . 3
⊢ (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉)) = (𝐴‘〈𝑋, 𝑌〉)) |
| 49 | | df-ov 7408 |
. . 3
⊢ (𝑋𝐴𝑌) = (𝐴‘〈𝑋, 𝑌〉) |
| 50 | 48, 49 | eqtr4di 2788 |
. 2
⊢ (𝜑 → (𝐴‘((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉)‘〈𝐼, 𝐽〉)) = (𝑋𝐴𝑌)) |
| 51 | 28, 50 | eqtrd 2770 |
1
⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) |