Step | Hyp | Ref
| Expression |
1 | | evlslem2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2734 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
3 | | eqid 2734 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
4 | | evlslem2.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
5 | | ovex 7478 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
6 | 4, 5 | rabex2 5362 |
. . . . . 6
⊢ 𝐷 ∈ V |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ V) |
8 | | evlslem2.p |
. . . . . . 7
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
9 | | evlslem2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
10 | | evlslem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
11 | | crngring 20267 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | 8, 9, 12 | mplringd 22060 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
15 | | evlslem2.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
16 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 9 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
18 | 12 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑅 ∈ Ring) |
19 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
20 | 8, 16, 1, 4, 19 | mplelf 22035 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐷⟶(Base‘𝑅)) |
21 | 20 | ffvelcdmda 7116 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
22 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝐷) |
23 | 8, 4, 15, 16, 17, 18, 1, 21, 22 | mplmon2cl 22109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
24 | 9 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
25 | 12 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑅 ∈ Ring) |
26 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
27 | 8, 16, 1, 4, 26 | mplelf 22035 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐷⟶(Base‘𝑅)) |
28 | 27 | ffvelcdmda 7116 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
29 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝐷) |
30 | 8, 4, 15, 16, 24, 25, 1, 28, 29 | mplmon2cl 22109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
31 | 6 | mptex 7258 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈
V |
32 | | funmpt 6615 |
. . . . . . . . . . . 12
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
33 | | fvex 6932 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) ∈ V |
34 | 31, 32, 33 | 3pm3.2i 1339 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) |
35 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V)) |
36 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
37 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) |
38 | 8, 1, 15, 36, 37 | mplelsfi 22032 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 finSupp 0 ) |
39 | 38 | fsuppimpd 9435 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ∈
Fin) |
40 | 8, 16, 1, 4, 36 | mplelf 22035 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐷⟶(Base‘𝑅)) |
41 | | ssidd 4026 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )) |
42 | 6 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
43 | 15 | fvexi 6933 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 0 ∈ V) |
45 | 40, 41, 42, 44 | suppssr 8232 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑗) = 0 ) |
46 | 45 | ifeq1d 4567 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 )) |
47 | | ifid 4588 |
. . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑗, 0 , 0 ) = 0 |
48 | 46, 47 | eqtrdi 2790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = 0 ) |
49 | 48 | mpteq2dv 5271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ 0 )) |
50 | | ringgrp 20260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
51 | 12, 50 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Grp) |
52 | 8, 4, 15, 3, 9, 51 | mpl0 22043 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑃) = (𝐷 × { 0 })) |
53 | | fconstmpt 5761 |
. . . . . . . . . . . . . 14
⊢ (𝐷 × { 0 }) = (𝑘 ∈ 𝐷 ↦ 0 ) |
54 | 52, 53 | eqtrdi 2790 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑃) = (𝑘 ∈ 𝐷 ↦ 0 )) |
55 | 54 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) →
(0g‘𝑃) =
(𝑘 ∈ 𝐷 ↦ 0 )) |
56 | 49, 55 | eqtr4d 2777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) =
(0g‘𝑃)) |
57 | 56, 42 | suppss2 8237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0
)) |
58 | | suppssfifsupp 9445 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) ∧ ((𝑦 supp
0 )
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0 ))) →
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
59 | 35, 39, 57, 58 | syl12anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
60 | 59 | ralrimiva 3148 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
61 | | fveq1 6918 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦‘𝑗) = (𝑥‘𝑗)) |
62 | 61 | ifeq1d 4567 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) |
63 | 62 | mpteq2dv 5271 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) |
64 | 63 | mpteq2dv 5271 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
65 | 64 | breq1d 5179 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃))) |
66 | 65 | cbvralvw 3238 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ ∀𝑥 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
67 | 60, 66 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
68 | 67 | r19.21bi 3252 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
69 | 68 | adantrr 716 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
70 | | equequ2 2025 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑘 = 𝑖 ↔ 𝑘 = 𝑗)) |
71 | | fveq2 6919 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑦‘𝑖) = (𝑦‘𝑗)) |
72 | 70, 71 | ifbieq1d 4572 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) |
73 | 72 | mpteq2dv 5271 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
74 | 73 | cbvmptv 5282 |
. . . . . 6
⊢ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
75 | 59 | adantrl 715 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
76 | 74, 75 | eqbrtrid 5204 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) finSupp
(0g‘𝑃)) |
77 | 1, 2, 3, 7, 7, 14,
23, 30, 69, 76 | gsumdixp 20337 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
78 | 77 | fveq2d 6923 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
79 | | ringcmn 20300 |
. . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
80 | 13, 79 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CMnd) |
81 | 80 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ CMnd) |
82 | | evlslem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ CRing) |
83 | | crngring 20267 |
. . . . . . 7
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
84 | 82, 83 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
85 | 84 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Ring) |
86 | | ringmnd 20265 |
. . . . 5
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) |
87 | 85, 86 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
88 | 6, 6 | xpex 7784 |
. . . . 5
⊢ (𝐷 × 𝐷) ∈ V |
89 | 88 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷 × 𝐷) ∈ V) |
90 | | evlslem2.e1 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) |
91 | | ghmmhm 19261 |
. . . . . 6
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
92 | 90, 91 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
93 | 92 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
94 | 13 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑃 ∈ Ring) |
95 | 23 | adantrr 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
96 | 30 | adantrl 715 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
97 | 1, 2 | ringcl 20272 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵 ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
98 | 94, 95, 96, 97 | syl3anc 1371 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
99 | 98 | ralrimivva 3204 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑗 ∈ 𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
100 | | eqid 2734 |
. . . . . 6
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
101 | 100 | fmpo 8105 |
. . . . 5
⊢
(∀𝑗 ∈
𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
102 | 99, 101 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
103 | 6, 6 | mpoex 8116 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
104 | 100 | mpofun 7570 |
. . . . . . 7
⊢ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
105 | 103, 104,
33 | 3pm3.2i 1339 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) |
106 | 105 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V)) |
107 | 69 | fsuppimpd 9435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
108 | 76 | fsuppimpd 9435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
109 | | xpfi 9382 |
. . . . . 6
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) → (((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
110 | 107, 108,
109 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
111 | 1, 3, 2, 14, 23, 30, 7, 7 | evlslem4 22117 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))) |
112 | | suppssfifsupp 9445 |
. . . . 5
⊢ ((((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) ∧ ((((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin ∧ ((𝑗 ∈
𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))))
→ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
113 | 106, 110,
111, 112 | syl12anc 836 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
114 | 1, 3, 81, 87, 89, 93, 102, 113 | gsummhm 19975 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
115 | 9 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝐼 ∈ 𝑊) |
116 | 10 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑅 ∈ CRing) |
117 | | eqid 2734 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
118 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑗 ∈ 𝐷) |
119 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑖 ∈ 𝐷) |
120 | 21 | adantrr 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
121 | 28 | adantrl 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
122 | 8, 4, 15, 16, 115, 116, 2, 117, 118, 119, 120, 121 | mplmon2mul 22110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) |
123 | 122 | fveq2d 6923 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 )))) |
124 | | evlslem2.e2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
125 | 124 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
126 | 123, 125 | eqtrd 2774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
127 | 126 | 3impb 1115 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
128 | 127 | mpoeq3dva 7523 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
129 | 128 | oveq2d 7461 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
130 | | eqidd 2735 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
131 | | eqid 2734 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
132 | 1, 131 | ghmf 19255 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆)) |
133 | 90, 132 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝐵⟶(Base‘𝑆)) |
134 | 133 | feqmptd 6989 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
135 | 134 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
136 | | fveq2 6919 |
. . . . . 6
⊢ (𝑧 = ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) → (𝐸‘𝑧) = (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
137 | 98, 130, 135, 136 | fmpoco 8132 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
138 | 137 | oveq2d 7461 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
139 | | eqidd 2735 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
140 | | fveq2 6919 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
141 | 23, 139, 135, 140 | fmptco 7161 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) = (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
142 | 141 | oveq2d 7461 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
143 | | eqidd 2735 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
144 | | fveq2 6919 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
145 | 30, 143, 135, 144 | fmptco 7161 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
146 | 145 | oveq2d 7461 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
147 | 142, 146 | oveq12d 7463 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
148 | | evlslem2.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
149 | | eqid 2734 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
150 | 133 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
151 | 150, 23 | ffvelcdmd 7117 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) ∈
(Base‘𝑆)) |
152 | 133 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
153 | 152, 30 | ffvelcdmd 7117 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈
(Base‘𝑆)) |
154 | 6 | mptex 7258 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈
V |
155 | | funmpt 6615 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
156 | | fvex 6932 |
. . . . . . . . 9
⊢
(0g‘𝑆) ∈ V |
157 | 154, 155,
156 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) |
158 | 157 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
159 | | ssidd 4026 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
160 | 3, 149 | ghmid 19257 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
161 | 90, 160 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
162 | 6 | mptex 7258 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V |
163 | 162 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V) |
164 | 33 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑃) ∈ V) |
165 | 159, 161,
163, 164 | suppssfv 8239 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
166 | 165 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
167 | | suppssfifsupp 9445 |
. . . . . . 7
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))))
→ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
168 | 158, 107,
166, 167 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
169 | 6 | mptex 7258 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
170 | | funmpt 6615 |
. . . . . . . . 9
⊢ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
171 | 169, 170,
156 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) |
172 | 171 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
173 | | ssidd 4026 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
174 | 6 | mptex 7258 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V |
175 | 174 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V) |
176 | 173, 161,
175, 164 | suppssfv 8239 |
. . . . . . . 8
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
177 | 176 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
178 | | suppssfifsupp 9445 |
. . . . . . 7
⊢ ((((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))))
→ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
179 | 172, 108,
177, 178 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
180 | 131, 148,
149, 7, 7, 85, 151, 153, 168, 179 | gsumdixp 20337 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
181 | 147, 180 | eqtrd 2774 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
182 | 129, 138,
181 | 3eqtr4d 2784 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
183 | 78, 114, 182 | 3eqtr2d 2780 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
184 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑊) |
185 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
186 | 8, 4, 15, 1, 184, 185, 19 | mplcoe4 22112 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
187 | 8, 4, 15, 1, 184, 185, 26 | mplcoe4 22112 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
188 | 186, 187 | oveq12d 7463 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
189 | 188 | fveq2d 6923 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
190 | 186 | fveq2d 6923 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
191 | 23 | fmpttd 7147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))):𝐷⟶𝐵) |
192 | 1, 3, 81, 87, 7, 93, 191, 69 | gsummhm 19975 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
193 | 190, 192 | eqtr4d 2777 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
194 | 187 | fveq2d 6923 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
195 | 30 | fmpttd 7147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))):𝐷⟶𝐵) |
196 | 1, 3, 81, 87, 7, 93, 195, 76 | gsummhm 19975 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
197 | 194, 196 | eqtr4d 2777 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
198 | 193, 197 | oveq12d 7463 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐸‘𝑥) · (𝐸‘𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
199 | 183, 189,
198 | 3eqtr4d 2784 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) |