| Step | Hyp | Ref
| Expression |
| 1 | | evlslem2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
| 2 | | eqid 2734 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 3 | | eqid 2734 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 4 | | evlslem2.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 5 | | ovex 7445 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 6 | 4, 5 | rabex2 5321 |
. . . . . 6
⊢ 𝐷 ∈ V |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ V) |
| 8 | | evlslem2.p |
. . . . . . 7
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 9 | | evlslem2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 10 | | evlslem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 11 | | crngring 20209 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | 8, 9, 12 | mplringd 21996 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
| 15 | | evlslem2.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 16 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 17 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
| 18 | 12 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 19 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 20 | 8, 16, 1, 4, 19 | mplelf 21971 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐷⟶(Base‘𝑅)) |
| 21 | 20 | ffvelcdmda 7083 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
| 22 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝐷) |
| 23 | 8, 4, 15, 16, 17, 18, 1, 21, 22 | mplmon2cl 22039 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
| 24 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
| 25 | 12 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 26 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 27 | 8, 16, 1, 4, 26 | mplelf 21971 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐷⟶(Base‘𝑅)) |
| 28 | 27 | ffvelcdmda 7083 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
| 29 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝐷) |
| 30 | 8, 4, 15, 16, 24, 25, 1, 28, 29 | mplmon2cl 22039 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
| 31 | 6 | mptex 7224 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈
V |
| 32 | | funmpt 6583 |
. . . . . . . . . . . 12
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
| 33 | | fvex 6898 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) ∈ V |
| 34 | 31, 32, 33 | 3pm3.2i 1339 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) |
| 35 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V)) |
| 36 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 37 | 8, 1, 15, 36 | mplelsfi 21968 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 finSupp 0 ) |
| 38 | 37 | fsuppimpd 9390 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ∈
Fin) |
| 39 | 8, 16, 1, 4, 36 | mplelf 21971 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐷⟶(Base‘𝑅)) |
| 40 | | ssidd 3987 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )) |
| 41 | 6 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
| 42 | 15 | fvexi 6899 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 0 ∈ V) |
| 44 | 39, 40, 41, 43 | suppssr 8201 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑗) = 0 ) |
| 45 | 44 | ifeq1d 4525 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 )) |
| 46 | | ifid 4546 |
. . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑗, 0 , 0 ) = 0 |
| 47 | 45, 46 | eqtrdi 2785 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = 0 ) |
| 48 | 47 | mpteq2dv 5224 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ 0 )) |
| 49 | | ringgrp 20202 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 50 | 12, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 51 | 8, 4, 15, 3, 9, 50 | mpl0 21979 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑃) = (𝐷 × { 0 })) |
| 52 | | fconstmpt 5727 |
. . . . . . . . . . . . . 14
⊢ (𝐷 × { 0 }) = (𝑘 ∈ 𝐷 ↦ 0 ) |
| 53 | 51, 52 | eqtrdi 2785 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑃) = (𝑘 ∈ 𝐷 ↦ 0 )) |
| 54 | 53 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) →
(0g‘𝑃) =
(𝑘 ∈ 𝐷 ↦ 0 )) |
| 55 | 48, 54 | eqtr4d 2772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) =
(0g‘𝑃)) |
| 56 | 55, 41 | suppss2 8206 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0
)) |
| 57 | | suppssfifsupp 9401 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) ∧ ((𝑦 supp
0 )
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0 ))) →
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 58 | 35, 38, 56, 57 | syl12anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 59 | 58 | ralrimiva 3133 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 60 | | fveq1 6884 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦‘𝑗) = (𝑥‘𝑗)) |
| 61 | 60 | ifeq1d 4525 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) |
| 62 | 61 | mpteq2dv 5224 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) |
| 63 | 62 | mpteq2dv 5224 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
| 64 | 63 | breq1d 5133 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃))) |
| 65 | 64 | cbvralvw 3223 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ ∀𝑥 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 66 | 59, 65 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 67 | 66 | r19.21bi 3237 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 68 | 67 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 69 | | equequ2 2024 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑘 = 𝑖 ↔ 𝑘 = 𝑗)) |
| 70 | | fveq2 6885 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑦‘𝑖) = (𝑦‘𝑗)) |
| 71 | 69, 70 | ifbieq1d 4530 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) |
| 72 | 71 | mpteq2dv 5224 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
| 73 | 72 | cbvmptv 5235 |
. . . . . 6
⊢ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
| 74 | 58 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
| 75 | 73, 74 | eqbrtrid 5158 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) finSupp
(0g‘𝑃)) |
| 76 | 1, 2, 3, 7, 7, 14,
23, 30, 68, 75 | gsumdixp 20283 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 77 | 76 | fveq2d 6889 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 78 | | ringcmn 20246 |
. . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
| 79 | 13, 78 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CMnd) |
| 80 | 79 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ CMnd) |
| 81 | | evlslem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 82 | | crngring 20209 |
. . . . . . 7
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
| 83 | 81, 82 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 84 | 83 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Ring) |
| 85 | | ringmnd 20207 |
. . . . 5
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) |
| 86 | 84, 85 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
| 87 | 6, 6 | xpex 7754 |
. . . . 5
⊢ (𝐷 × 𝐷) ∈ V |
| 88 | 87 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷 × 𝐷) ∈ V) |
| 89 | | evlslem2.e1 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) |
| 90 | | ghmmhm 19212 |
. . . . . 6
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
| 91 | 89, 90 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
| 92 | 91 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
| 93 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑃 ∈ Ring) |
| 94 | 23 | adantrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
| 95 | 30 | adantrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
| 96 | 1, 2 | ringcl 20214 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵 ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
| 97 | 93, 94, 95, 96 | syl3anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
| 98 | 97 | ralrimivva 3189 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑗 ∈ 𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
| 99 | | eqid 2734 |
. . . . . 6
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
| 100 | 99 | fmpo 8074 |
. . . . 5
⊢
(∀𝑗 ∈
𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
| 101 | 98, 100 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
| 102 | 6, 6 | mpoex 8085 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
| 103 | 99 | mpofun 7538 |
. . . . . . 7
⊢ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
| 104 | 102, 103,
33 | 3pm3.2i 1339 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) |
| 105 | 104 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V)) |
| 106 | 68 | fsuppimpd 9390 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
| 107 | 75 | fsuppimpd 9390 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
| 108 | | xpfi 9339 |
. . . . . 6
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) → (((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
| 109 | 106, 107,
108 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
| 110 | 1, 3, 2, 14, 23, 30, 7, 7 | evlslem4 22047 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))) |
| 111 | | suppssfifsupp 9401 |
. . . . 5
⊢ ((((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) ∧ ((((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin ∧ ((𝑗 ∈
𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))))
→ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
| 112 | 105, 109,
110, 111 | syl12anc 836 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
| 113 | 1, 3, 80, 86, 88, 92, 101, 112 | gsummhm 19923 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 114 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝐼 ∈ 𝑊) |
| 115 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑅 ∈ CRing) |
| 116 | | eqid 2734 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 117 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑗 ∈ 𝐷) |
| 118 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑖 ∈ 𝐷) |
| 119 | 21 | adantrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
| 120 | 28 | adantrl 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
| 121 | 8, 4, 15, 16, 114, 115, 2, 116, 117, 118, 119, 120 | mplmon2mul 22040 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) |
| 122 | 121 | fveq2d 6889 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 )))) |
| 123 | | evlslem2.e2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 124 | 123 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 125 | 122, 124 | eqtrd 2769 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 126 | 125 | 3impb 1114 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 127 | 126 | mpoeq3dva 7491 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 128 | 127 | oveq2d 7428 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 129 | | eqidd 2735 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 130 | | eqid 2734 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 131 | 1, 130 | ghmf 19206 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆)) |
| 132 | 89, 131 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝐵⟶(Base‘𝑆)) |
| 133 | 132 | feqmptd 6956 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
| 134 | 133 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
| 135 | | fveq2 6885 |
. . . . . 6
⊢ (𝑧 = ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) → (𝐸‘𝑧) = (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 136 | 97, 129, 134, 135 | fmpoco 8101 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 137 | 136 | oveq2d 7428 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 138 | | eqidd 2735 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
| 139 | | fveq2 6885 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
| 140 | 23, 138, 134, 139 | fmptco 7128 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) = (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
| 141 | 140 | oveq2d 7428 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
| 142 | | eqidd 2735 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
| 143 | | fveq2 6885 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
| 144 | 30, 142, 134, 143 | fmptco 7128 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 145 | 144 | oveq2d 7428 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 146 | 141, 145 | oveq12d 7430 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 147 | | evlslem2.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
| 148 | | eqid 2734 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 149 | 132 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
| 150 | 149, 23 | ffvelcdmd 7084 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) ∈
(Base‘𝑆)) |
| 151 | 132 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
| 152 | 151, 30 | ffvelcdmd 7084 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈
(Base‘𝑆)) |
| 153 | 6 | mptex 7224 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈
V |
| 154 | | funmpt 6583 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
| 155 | | fvex 6898 |
. . . . . . . . 9
⊢
(0g‘𝑆) ∈ V |
| 156 | 153, 154,
155 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) |
| 157 | 156 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
| 158 | | ssidd 3987 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
| 159 | 3, 148 | ghmid 19208 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
| 160 | 89, 159 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
| 161 | 6 | mptex 7224 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V |
| 162 | 161 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V) |
| 163 | 33 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑃) ∈ V) |
| 164 | 158, 160,
162, 163 | suppssfv 8208 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
| 165 | 164 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
| 166 | | suppssfifsupp 9401 |
. . . . . . 7
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))))
→ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
| 167 | 157, 106,
165, 166 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
| 168 | 6 | mptex 7224 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
| 169 | | funmpt 6583 |
. . . . . . . . 9
⊢ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
| 170 | 168, 169,
155 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) |
| 171 | 170 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
| 172 | | ssidd 3987 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
| 173 | 6 | mptex 7224 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V |
| 174 | 173 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V) |
| 175 | 172, 160,
174, 163 | suppssfv 8208 |
. . . . . . . 8
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
| 176 | 175 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
| 177 | | suppssfifsupp 9401 |
. . . . . . 7
⊢ ((((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))))
→ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
| 178 | 171, 107,
176, 177 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
| 179 | 130, 147,
148, 7, 7, 84, 150, 152, 167, 178 | gsumdixp 20283 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 180 | 146, 179 | eqtrd 2769 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 181 | 128, 137,
180 | 3eqtr4d 2779 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 182 | 77, 113, 181 | 3eqtr2d 2775 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 183 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑊) |
| 184 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 185 | 8, 4, 15, 1, 183, 184, 19 | mplcoe4 22042 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
| 186 | 8, 4, 15, 1, 183, 184, 26 | mplcoe4 22042 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
| 187 | 185, 186 | oveq12d 7430 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 188 | 187 | fveq2d 6889 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 189 | 185 | fveq2d 6889 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
| 190 | 23 | fmpttd 7114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))):𝐷⟶𝐵) |
| 191 | 1, 3, 80, 86, 7, 92, 190, 68 | gsummhm 19923 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
| 192 | 189, 191 | eqtr4d 2772 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
| 193 | 186 | fveq2d 6889 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 194 | 30 | fmpttd 7114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))):𝐷⟶𝐵) |
| 195 | 1, 3, 80, 86, 7, 92, 194, 75 | gsummhm 19923 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 196 | 193, 195 | eqtr4d 2772 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
| 197 | 192, 196 | oveq12d 7430 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐸‘𝑥) · (𝐸‘𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
| 198 | 182, 188,
197 | 3eqtr4d 2779 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) |