Step | Hyp | Ref
| Expression |
1 | | evlslem2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2737 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
3 | | eqid 2737 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
4 | | evlslem2.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
5 | | ovex 7471 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
6 | 4, 5 | rabex2 5350 |
. . . . . 6
⊢ 𝐷 ∈ V |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ V) |
8 | | evlslem2.p |
. . . . . . 7
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
9 | | evlslem2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
10 | | evlslem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
11 | | crngring 20272 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | 8, 9, 12 | mplringd 22070 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
15 | | evlslem2.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
16 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
18 | 12 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑅 ∈ Ring) |
19 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
20 | 8, 16, 1, 4, 19 | mplelf 22045 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐷⟶(Base‘𝑅)) |
21 | 20 | ffvelcdmda 7111 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
22 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝐷) |
23 | 8, 4, 15, 16, 17, 18, 1, 21, 22 | mplmon2cl 22119 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
24 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
25 | 12 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑅 ∈ Ring) |
26 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
27 | 8, 16, 1, 4, 26 | mplelf 22045 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐷⟶(Base‘𝑅)) |
28 | 27 | ffvelcdmda 7111 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
29 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝐷) |
30 | 8, 4, 15, 16, 24, 25, 1, 28, 29 | mplmon2cl 22119 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
31 | 6 | mptex 7250 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈
V |
32 | | funmpt 6612 |
. . . . . . . . . . . 12
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
33 | | fvex 6927 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) ∈ V |
34 | 31, 32, 33 | 3pm3.2i 1340 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) |
35 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V)) |
36 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
37 | 8, 1, 15, 36 | mplelsfi 22042 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 finSupp 0 ) |
38 | 37 | fsuppimpd 9416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ∈
Fin) |
39 | 8, 16, 1, 4, 36 | mplelf 22045 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐷⟶(Base‘𝑅)) |
40 | | ssidd 4022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )) |
41 | 6 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
42 | 15 | fvexi 6928 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 0 ∈ V) |
44 | 39, 40, 41, 43 | suppssr 8228 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑗) = 0 ) |
45 | 44 | ifeq1d 4553 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 )) |
46 | | ifid 4574 |
. . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑗, 0 , 0 ) = 0 |
47 | 45, 46 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = 0 ) |
48 | 47 | mpteq2dv 5253 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ 0 )) |
49 | | ringgrp 20265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
50 | 12, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Grp) |
51 | 8, 4, 15, 3, 9, 50 | mpl0 22053 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑃) = (𝐷 × { 0 })) |
52 | | fconstmpt 5755 |
. . . . . . . . . . . . . 14
⊢ (𝐷 × { 0 }) = (𝑘 ∈ 𝐷 ↦ 0 ) |
53 | 51, 52 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑃) = (𝑘 ∈ 𝐷 ↦ 0 )) |
54 | 53 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) →
(0g‘𝑃) =
(𝑘 ∈ 𝐷 ↦ 0 )) |
55 | 48, 54 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) =
(0g‘𝑃)) |
56 | 55, 41 | suppss2 8233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0
)) |
57 | | suppssfifsupp 9427 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) ∧ ((𝑦 supp
0 )
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0 ))) →
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
58 | 35, 38, 56, 57 | syl12anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
59 | 58 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
60 | | fveq1 6913 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦‘𝑗) = (𝑥‘𝑗)) |
61 | 60 | ifeq1d 4553 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) |
62 | 61 | mpteq2dv 5253 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) |
63 | 62 | mpteq2dv 5253 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
64 | 63 | breq1d 5161 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃))) |
65 | 64 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ ∀𝑥 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
66 | 59, 65 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
67 | 66 | r19.21bi 3251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
68 | 67 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
69 | | equequ2 2025 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑘 = 𝑖 ↔ 𝑘 = 𝑗)) |
70 | | fveq2 6914 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑦‘𝑖) = (𝑦‘𝑗)) |
71 | 69, 70 | ifbieq1d 4558 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) |
72 | 71 | mpteq2dv 5253 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
73 | 72 | cbvmptv 5264 |
. . . . . 6
⊢ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
74 | 58 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
75 | 73, 74 | eqbrtrid 5186 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) finSupp
(0g‘𝑃)) |
76 | 1, 2, 3, 7, 7, 14,
23, 30, 68, 75 | gsumdixp 20342 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
77 | 76 | fveq2d 6918 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
78 | | ringcmn 20305 |
. . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
79 | 13, 78 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CMnd) |
80 | 79 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ CMnd) |
81 | | evlslem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ CRing) |
82 | | crngring 20272 |
. . . . . . 7
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
83 | 81, 82 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
84 | 83 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Ring) |
85 | | ringmnd 20270 |
. . . . 5
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) |
86 | 84, 85 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
87 | 6, 6 | xpex 7779 |
. . . . 5
⊢ (𝐷 × 𝐷) ∈ V |
88 | 87 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷 × 𝐷) ∈ V) |
89 | | evlslem2.e1 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) |
90 | | ghmmhm 19266 |
. . . . . 6
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
91 | 89, 90 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
92 | 91 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
93 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑃 ∈ Ring) |
94 | 23 | adantrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
95 | 30 | adantrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
96 | 1, 2 | ringcl 20277 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵 ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
97 | 93, 94, 95, 96 | syl3anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
98 | 97 | ralrimivva 3202 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑗 ∈ 𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
99 | | eqid 2737 |
. . . . . 6
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
100 | 99 | fmpo 8101 |
. . . . 5
⊢
(∀𝑗 ∈
𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
101 | 98, 100 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
102 | 6, 6 | mpoex 8112 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
103 | 99 | mpofun 7564 |
. . . . . . 7
⊢ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
104 | 102, 103,
33 | 3pm3.2i 1340 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) |
105 | 104 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V)) |
106 | 68 | fsuppimpd 9416 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
107 | 75 | fsuppimpd 9416 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
108 | | xpfi 9365 |
. . . . . 6
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) → (((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
109 | 106, 107,
108 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
110 | 1, 3, 2, 14, 23, 30, 7, 7 | evlslem4 22127 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))) |
111 | | suppssfifsupp 9427 |
. . . . 5
⊢ ((((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) ∧ ((((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin ∧ ((𝑗 ∈
𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))))
→ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
112 | 105, 109,
110, 111 | syl12anc 837 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
113 | 1, 3, 80, 86, 88, 92, 101, 112 | gsummhm 19980 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
114 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝐼 ∈ 𝑊) |
115 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑅 ∈ CRing) |
116 | | eqid 2737 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
117 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑗 ∈ 𝐷) |
118 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑖 ∈ 𝐷) |
119 | 21 | adantrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
120 | 28 | adantrl 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
121 | 8, 4, 15, 16, 114, 115, 2, 116, 117, 118, 119, 120 | mplmon2mul 22120 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) |
122 | 121 | fveq2d 6918 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 )))) |
123 | | evlslem2.e2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
124 | 123 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
125 | 122, 124 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
126 | 125 | 3impb 1115 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
127 | 126 | mpoeq3dva 7517 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
128 | 127 | oveq2d 7454 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
129 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
130 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
131 | 1, 130 | ghmf 19260 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆)) |
132 | 89, 131 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝐵⟶(Base‘𝑆)) |
133 | 132 | feqmptd 6984 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
134 | 133 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
135 | | fveq2 6914 |
. . . . . 6
⊢ (𝑧 = ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) → (𝐸‘𝑧) = (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
136 | 97, 129, 134, 135 | fmpoco 8128 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
137 | 136 | oveq2d 7454 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
138 | | eqidd 2738 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
139 | | fveq2 6914 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
140 | 23, 138, 134, 139 | fmptco 7156 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) = (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
141 | 140 | oveq2d 7454 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
142 | | eqidd 2738 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
143 | | fveq2 6914 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
144 | 30, 142, 134, 143 | fmptco 7156 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
145 | 144 | oveq2d 7454 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
146 | 141, 145 | oveq12d 7456 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
147 | | evlslem2.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
148 | | eqid 2737 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
149 | 132 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
150 | 149, 23 | ffvelcdmd 7112 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) ∈
(Base‘𝑆)) |
151 | 132 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
152 | 151, 30 | ffvelcdmd 7112 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈
(Base‘𝑆)) |
153 | 6 | mptex 7250 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈
V |
154 | | funmpt 6612 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
155 | | fvex 6927 |
. . . . . . . . 9
⊢
(0g‘𝑆) ∈ V |
156 | 153, 154,
155 | 3pm3.2i 1340 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) |
157 | 156 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
158 | | ssidd 4022 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
159 | 3, 148 | ghmid 19262 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
160 | 89, 159 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
161 | 6 | mptex 7250 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V |
162 | 161 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V) |
163 | 33 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑃) ∈ V) |
164 | 158, 160,
162, 163 | suppssfv 8235 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
165 | 164 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
166 | | suppssfifsupp 9427 |
. . . . . . 7
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))))
→ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
167 | 157, 106,
165, 166 | syl12anc 837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
168 | 6 | mptex 7250 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
169 | | funmpt 6612 |
. . . . . . . . 9
⊢ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
170 | 168, 169,
155 | 3pm3.2i 1340 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) |
171 | 170 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
172 | | ssidd 4022 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
173 | 6 | mptex 7250 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V |
174 | 173 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V) |
175 | 172, 160,
174, 163 | suppssfv 8235 |
. . . . . . . 8
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
176 | 175 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
177 | | suppssfifsupp 9427 |
. . . . . . 7
⊢ ((((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))))
→ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
178 | 171, 107,
176, 177 | syl12anc 837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
179 | 130, 147,
148, 7, 7, 84, 150, 152, 167, 178 | gsumdixp 20342 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
180 | 146, 179 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
181 | 128, 137,
180 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
182 | 77, 113, 181 | 3eqtr2d 2783 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
183 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑊) |
184 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
185 | 8, 4, 15, 1, 183, 184, 19 | mplcoe4 22122 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
186 | 8, 4, 15, 1, 183, 184, 26 | mplcoe4 22122 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
187 | 185, 186 | oveq12d 7456 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
188 | 187 | fveq2d 6918 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
189 | 185 | fveq2d 6918 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
190 | 23 | fmpttd 7142 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))):𝐷⟶𝐵) |
191 | 1, 3, 80, 86, 7, 92, 190, 68 | gsummhm 19980 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
192 | 189, 191 | eqtr4d 2780 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
193 | 186 | fveq2d 6918 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
194 | 30 | fmpttd 7142 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))):𝐷⟶𝐵) |
195 | 1, 3, 80, 86, 7, 92, 194, 75 | gsummhm 19980 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
196 | 193, 195 | eqtr4d 2780 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
197 | 192, 196 | oveq12d 7456 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐸‘𝑥) · (𝐸‘𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
198 | 182, 188,
197 | 3eqtr4d 2787 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) |