Step | Hyp | Ref
| Expression |
1 | | evlslem2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
3 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
4 | | evlslem2.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
5 | | ovex 7288 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
6 | 4, 5 | rabex2 5253 |
. . . . . 6
⊢ 𝐷 ∈ V |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ V) |
8 | | evlslem2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
9 | | evlslem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
10 | | crngring 19710 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | | evlslem2.p |
. . . . . . . 8
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
13 | 12 | mplring 21134 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
14 | 8, 11, 13 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
16 | | evlslem2.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
17 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
18 | 8 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
19 | 11 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑅 ∈ Ring) |
20 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
21 | 12, 17, 1, 4, 20 | mplelf 21114 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐷⟶(Base‘𝑅)) |
22 | 21 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
23 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝑗 ∈ 𝐷) |
24 | 12, 4, 16, 17, 18, 19, 1, 22, 23 | mplmon2cl 21186 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
25 | 8 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
26 | 11 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑅 ∈ Ring) |
27 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
28 | 12, 17, 1, 4, 27 | mplelf 21114 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐷⟶(Base‘𝑅)) |
29 | 28 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
30 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝑖 ∈ 𝐷) |
31 | 12, 4, 16, 17, 25, 26, 1, 29, 30 | mplmon2cl 21186 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
32 | 6 | mptex 7081 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈
V |
33 | | funmpt 6456 |
. . . . . . . . . . . 12
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
34 | | fvex 6769 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) ∈ V |
35 | 32, 33, 34 | 3pm3.2i 1337 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) |
36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V)) |
37 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
38 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) |
39 | 12, 1, 16, 37, 38 | mplelsfi 21111 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 finSupp 0 ) |
40 | 39 | fsuppimpd 9065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ∈
Fin) |
41 | 12, 17, 1, 4, 37 | mplelf 21114 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐷⟶(Base‘𝑅)) |
42 | | ssidd 3940 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )) |
43 | 6 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
44 | 16 | fvexi 6770 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 0 ∈ V) |
46 | 41, 42, 43, 45 | suppssr 7983 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑗) = 0 ) |
47 | 46 | ifeq1d 4475 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 )) |
48 | | ifid 4496 |
. . . . . . . . . . . . . 14
⊢ if(𝑘 = 𝑗, 0 , 0 ) = 0 |
49 | 47, 48 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = 0 ) |
50 | 49 | mpteq2dv 5172 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ 0 )) |
51 | | ringgrp 19703 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
52 | 11, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Grp) |
53 | 12, 4, 16, 3, 8, 52 | mpl0 21122 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑃) = (𝐷 × { 0 })) |
54 | | fconstmpt 5640 |
. . . . . . . . . . . . . 14
⊢ (𝐷 × { 0 }) = (𝑘 ∈ 𝐷 ↦ 0 ) |
55 | 53, 54 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑃) = (𝑘 ∈ 𝐷 ↦ 0 )) |
56 | 55 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) →
(0g‘𝑃) =
(𝑘 ∈ 𝐷 ↦ 0 )) |
57 | 50, 56 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) =
(0g‘𝑃)) |
58 | 57, 43 | suppss2 7987 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0
)) |
59 | | suppssfifsupp 9073 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) ∧
(0g‘𝑃)
∈ V) ∧ ((𝑦 supp
0 )
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ (𝑦 supp 0 ))) →
(𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
60 | 36, 40, 58, 59 | syl12anc 833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
61 | 60 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
62 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦‘𝑗) = (𝑥‘𝑗)) |
63 | 62 | ifeq1d 4475 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) |
64 | 63 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) |
65 | 64 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
66 | 65 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃))) |
67 | 66 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)
↔ ∀𝑥 ∈
𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
68 | 61, 67 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
69 | 68 | r19.21bi 3132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
70 | 69 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
71 | | equequ2 2030 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑘 = 𝑖 ↔ 𝑘 = 𝑗)) |
72 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑦‘𝑖) = (𝑦‘𝑗)) |
73 | 71, 72 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦‘𝑗), 0 )) |
74 | 73 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
75 | 74 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) |
76 | 60 | adantrl 712 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑦‘𝑗), 0 ))) finSupp
(0g‘𝑃)) |
77 | 75, 76 | eqbrtrid 5105 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) finSupp
(0g‘𝑃)) |
78 | 1, 2, 3, 7, 7, 15,
24, 31, 70, 77 | gsumdixp 19763 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
79 | 78 | fveq2d 6760 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
80 | | ringcmn 19735 |
. . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
81 | 14, 80 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CMnd) |
82 | 81 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ CMnd) |
83 | | evlslem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ CRing) |
84 | | crngring 19710 |
. . . . . . 7
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
85 | 83, 84 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
86 | 85 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Ring) |
87 | | ringmnd 19708 |
. . . . 5
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) |
88 | 86, 87 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
89 | 6, 6 | xpex 7581 |
. . . . 5
⊢ (𝐷 × 𝐷) ∈ V |
90 | 89 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐷 × 𝐷) ∈ V) |
91 | | evlslem2.e1 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) |
92 | | ghmmhm 18759 |
. . . . . 6
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
93 | 91, 92 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
94 | 93 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆)) |
95 | 14 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑃 ∈ Ring) |
96 | 24 | adantrr 713 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵) |
97 | 31 | adantrl 712 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) |
98 | 1, 2 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈ 𝐵 ∧ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈ 𝐵) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
99 | 95, 96, 97, 98 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
100 | 99 | ralrimivva 3114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑗 ∈ 𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵) |
101 | | eqid 2738 |
. . . . . 6
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
102 | 101 | fmpo 7881 |
. . . . 5
⊢
(∀𝑗 ∈
𝐷 ∀𝑖 ∈ 𝐷 ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
103 | 100, 102 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵) |
104 | 6, 6 | mpoex 7893 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
105 | 101 | mpofun 7376 |
. . . . . . 7
⊢ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
106 | 104, 105,
34 | 3pm3.2i 1337 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) |
107 | 106 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V)) |
108 | 70 | fsuppimpd 9065 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
109 | 77 | fsuppimpd 9065 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) |
110 | | xpfi 9015 |
. . . . . 6
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin) → (((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
111 | 108, 109,
110 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin) |
112 | 1, 3, 2, 15, 24, 31, 7, 7 | evlslem4 21194 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))) |
113 | | suppssfifsupp 9073 |
. . . . 5
⊢ ((((𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑃)
∈ V) ∧ ((((𝑗
∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))
∈ Fin ∧ ((𝑗 ∈
𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑃))
⊆ (((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
× ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃)))))
→ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
114 | 107, 111,
112, 113 | syl12anc 833 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑃)) |
115 | 1, 3, 82, 88, 90, 94, 103, 114 | gsummhm 19454 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
116 | 8 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝐼 ∈ 𝑊) |
117 | 9 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑅 ∈ CRing) |
118 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
119 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑗 ∈ 𝐷) |
120 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → 𝑖 ∈ 𝐷) |
121 | 22 | adantrr 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑥‘𝑗) ∈ (Base‘𝑅)) |
122 | 29 | adantrl 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝑦‘𝑖) ∈ (Base‘𝑅)) |
123 | 12, 4, 16, 17, 116, 117, 2, 118, 119, 120, 121, 122 | mplmon2mul 21187 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) |
124 | 123 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 )))) |
125 | | evlslem2.e2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
126 | 125 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
127 | 124, 126 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷)) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
128 | 127 | 3impb 1113 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷) → (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
129 | 128 | mpoeq3dva 7330 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
130 | 129 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
131 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
132 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
133 | 1, 132 | ghmf 18753 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆)) |
134 | 91, 133 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝐵⟶(Base‘𝑆)) |
135 | 134 | feqmptd 6819 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
136 | 135 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐸 = (𝑧 ∈ 𝐵 ↦ (𝐸‘𝑧))) |
137 | | fveq2 6756 |
. . . . . 6
⊢ (𝑧 = ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) → (𝐸‘𝑧) = (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
138 | 99, 131, 136, 137 | fmpoco 7906 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
139 | 138 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ (𝐸‘((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
140 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) = (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
141 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
142 | 24, 140, 136, 141 | fmptco 6983 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) = (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
143 | 142 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
144 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) = (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
145 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) → (𝐸‘𝑧) = (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
146 | 31, 144, 136, 145 | fmptco 6983 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) = (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
147 | 146 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
148 | 143, 147 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
149 | | evlslem2.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
150 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
151 | 134 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
152 | 151, 24 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑗 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) ∈
(Base‘𝑆)) |
153 | 134 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → 𝐸:𝐵⟶(Base‘𝑆)) |
154 | 153, 31 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑖 ∈ 𝐷) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) ∈
(Base‘𝑆)) |
155 | 6 | mptex 7081 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈
V |
156 | | funmpt 6456 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) |
157 | | fvex 6769 |
. . . . . . . . 9
⊢
(0g‘𝑆) ∈ V |
158 | 155, 156,
157 | 3pm3.2i 1337 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) |
159 | 158 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
160 | | ssidd 3940 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
161 | 3, 150 | ghmid 18755 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
162 | 91, 161 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘(0g‘𝑃)) = (0g‘𝑆)) |
163 | 6 | mptex 7081 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V |
164 | 163 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )) ∈
V) |
165 | 34 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑃) ∈ V) |
166 | 160, 162,
164, 165 | suppssfv 7989 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
167 | 166 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))) |
168 | | suppssfifsupp 9073 |
. . . . . . 7
⊢ ((((𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∈ V ∧ Fun
(𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑗 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑗 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) supp
(0g‘𝑃))))
→ (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
169 | 159, 108,
167, 168 | syl12anc 833 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))) finSupp
(0g‘𝑆)) |
170 | 6 | mptex 7081 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈
V |
171 | | funmpt 6456 |
. . . . . . . . 9
⊢ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) |
172 | 170, 171,
157 | 3pm3.2i 1337 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) |
173 | 172 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V)) |
174 | | ssidd 3940 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
175 | 6 | mptex 7081 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V |
176 | 175 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐷) → (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )) ∈
V) |
177 | 174, 162,
176, 165 | suppssfv 7989 |
. . . . . . . 8
⊢ (𝜑 → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
178 | 177 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))) |
179 | | suppssfifsupp 9073 |
. . . . . . 7
⊢ ((((𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∈ V ∧ Fun
(𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) ∧
(0g‘𝑆)
∈ V) ∧ (((𝑖 ∈
𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))
∈ Fin ∧ ((𝑖 ∈
𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) supp
(0g‘𝑆))
⊆ ((𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))) supp
(0g‘𝑃))))
→ (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
180 | 173, 109,
178, 179 | syl12anc 833 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))) finSupp
(0g‘𝑆)) |
181 | 132, 149,
150, 7, 7, 86, 152, 154, 169, 180 | gsumdixp 19763 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝑗 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝑖 ∈ 𝐷 ↦ (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
182 | 148, 181 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = (𝑆 Σg
(𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
183 | 130, 139,
182 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷, 𝑖 ∈ 𝐷 ↦ ((𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))(.r‘𝑃)(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
184 | 79, 115, 183 | 3eqtr2d 2784 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) = ((𝑆 Σg
(𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
185 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑊) |
186 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
187 | 12, 4, 16, 1, 185, 186, 20 | mplcoe4 21189 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) |
188 | 12, 4, 16, 1, 185, 186, 27 | mplcoe4 21189 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) |
189 | 187, 188 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) = ((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
190 | 189 | fveq2d 6760 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0
))))(.r‘𝑃)(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
191 | 187 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
192 | 24 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))):𝐷⟶𝐵) |
193 | 1, 3, 82, 88, 7, 94, 192, 70 | gsummhm 19454 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
194 | 191, 193 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 )))))) |
195 | 188 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
196 | 31 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))):𝐷⟶𝐵) |
197 | 1, 3, 82, 88, 7, 94, 196, 77 | gsummhm 19454 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
198 | 195, 197 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 )))))) |
199 | 194, 198 | oveq12d 7273 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐸‘𝑥) · (𝐸‘𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖 ∈ 𝐷 ↦ (𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))))) |
200 | 184, 190,
199 | 3eqtr4d 2788 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) |