MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem2 Structured version   Visualization version   GIF version

Theorem evlslem2 21992
Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem2.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem2.b 𝐵 = (Base‘𝑃)
evlslem2.m · = (.r𝑆)
evlslem2.z 0 = (0g𝑅)
evlslem2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem2.i (𝜑𝐼𝑊)
evlslem2.r (𝜑𝑅 ∈ CRing)
evlslem2.s (𝜑𝑆 ∈ CRing)
evlslem2.e1 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
evlslem2.e2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
Assertion
Ref Expression
evlslem2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Distinct variable groups:   𝜑,𝑖,𝑗,𝑘,𝑦   𝐵,𝑖,𝑗,𝑘,𝑥,𝑦   𝐷,𝑖,𝑗,𝑘,𝑥,𝑦   𝑖,𝐸,𝑗   ,𝐼,𝑖,𝑗,𝑘   · ,𝑖,𝑗   𝑃,𝑖,𝑗,𝑘,𝑥,𝑦   𝑅,,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗   𝑖,𝑊,𝑗,𝑘   0 ,,𝑖,𝑗,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,)   𝐵()   𝐷()   𝑃()   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑘)   · (𝑥,𝑦,,𝑘)   𝐸(𝑥,𝑦,,𝑘)   𝐼(𝑥,𝑦)   𝑊(𝑥,𝑦,)

Proof of Theorem evlslem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 evlslem2.b . . . . 5 𝐵 = (Base‘𝑃)
2 eqid 2730 . . . . 5 (.r𝑃) = (.r𝑃)
3 eqid 2730 . . . . 5 (0g𝑃) = (0g𝑃)
4 evlslem2.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
5 ovex 7427 . . . . . . 7 (ℕ0m 𝐼) ∈ V
64, 5rabex2 5304 . . . . . 6 𝐷 ∈ V
76a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
8 evlslem2.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
9 evlslem2.i . . . . . . 7 (𝜑𝐼𝑊)
10 evlslem2.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
11 crngring 20160 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
138, 9, 12mplringd 21938 . . . . . 6 (𝜑𝑃 ∈ Ring)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
15 evlslem2.z . . . . . 6 0 = (0g𝑅)
16 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
179ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐼𝑊)
1812ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑅 ∈ Ring)
19 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
208, 16, 1, 4, 19mplelf 21913 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
2120ffvelcdmda 7063 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑥𝑗) ∈ (Base‘𝑅))
22 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑗𝐷)
238, 4, 15, 16, 17, 18, 1, 21, 22mplmon2cl 21981 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
249ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐼𝑊)
2512ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑅 ∈ Ring)
26 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
278, 16, 1, 4, 26mplelf 21913 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
2827ffvelcdmda 7063 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑦𝑖) ∈ (Base‘𝑅))
29 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑖𝐷)
308, 4, 15, 16, 24, 25, 1, 28, 29mplmon2cl 21981 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
316mptex 7204 . . . . . . . . . . . 12 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V
32 funmpt 6562 . . . . . . . . . . . 12 Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
33 fvex 6878 . . . . . . . . . . . 12 (0g𝑃) ∈ V
3431, 32, 333pm3.2i 1340 . . . . . . . . . . 11 ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V)
3534a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V))
36 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦𝐵)
378, 1, 15, 36mplelsfi 21910 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → 𝑦 finSupp 0 )
3837fsuppimpd 9338 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
398, 16, 1, 4, 36mplelf 21913 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝑦:𝐷⟶(Base‘𝑅))
40 ssidd 3978 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
416a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
4215fvexi 6879 . . . . . . . . . . . . . . . . 17 0 ∈ V
4342a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 0 ∈ V)
4439, 40, 41, 43suppssr 8183 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦𝑗) = 0 )
4544ifeq1d 4516 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 ))
46 ifid 4537 . . . . . . . . . . . . . 14 if(𝑘 = 𝑗, 0 , 0 ) = 0
4745, 46eqtrdi 2781 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = 0 )
4847mpteq2dv 5209 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷0 ))
49 ringgrp 20153 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5012, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Grp)
518, 4, 15, 3, 9, 50mpl0 21921 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
52 fconstmpt 5708 . . . . . . . . . . . . . 14 (𝐷 × { 0 }) = (𝑘𝐷0 )
5351, 52eqtrdi 2781 . . . . . . . . . . . . 13 (𝜑 → (0g𝑃) = (𝑘𝐷0 ))
5453ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (0g𝑃) = (𝑘𝐷0 ))
5548, 54eqtr4d 2768 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (0g𝑃))
5655, 41suppss2 8188 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))
57 suppssfifsupp 9349 . . . . . . . . . 10 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V) ∧ ((𝑦 supp 0 ) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
5835, 38, 56, 57syl12anc 836 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
5958ralrimiva 3127 . . . . . . . 8 (𝜑 → ∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
60 fveq1 6864 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑗) = (𝑥𝑗))
6160ifeq1d 4516 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥𝑗), 0 ))
6261mpteq2dv 5209 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))
6362mpteq2dv 5209 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
6463breq1d 5125 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃)))
6564cbvralvw 3217 . . . . . . . 8 (∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6659, 65sylib 218 . . . . . . 7 (𝜑 → ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6766r19.21bi 3231 . . . . . 6 ((𝜑𝑥𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
6867adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
69 equequ2 2026 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑘 = 𝑖𝑘 = 𝑗))
70 fveq2 6865 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑦𝑖) = (𝑦𝑗))
7169, 70ifbieq1d 4521 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦𝑗), 0 ))
7271mpteq2dv 5209 . . . . . . 7 (𝑖 = 𝑗 → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7372cbvmptv 5219 . . . . . 6 (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7458adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
7573, 74eqbrtrid 5150 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) finSupp (0g𝑃))
761, 2, 3, 7, 7, 14, 23, 30, 68, 75gsumdixp 20234 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
7776fveq2d 6869 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
78 ringcmn 20197 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
7913, 78syl 17 . . . . 5 (𝜑𝑃 ∈ CMnd)
8079adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ CMnd)
81 evlslem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
82 crngring 20160 . . . . . . 7 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
8381, 82syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
8483adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Ring)
85 ringmnd 20158 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
8684, 85syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
876, 6xpex 7736 . . . . 5 (𝐷 × 𝐷) ∈ V
8887a1i 11 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 × 𝐷) ∈ V)
89 evlslem2.e1 . . . . . 6 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
90 ghmmhm 19164 . . . . . 6 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9189, 90syl 17 . . . . 5 (𝜑𝐸 ∈ (𝑃 MndHom 𝑆))
9291adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9313ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑃 ∈ Ring)
9423adantrr 717 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
9530adantrl 716 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
961, 2ringcl 20165 . . . . . . 7 ((𝑃 ∈ Ring ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵 ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
9793, 94, 95, 96syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
9897ralrimivva 3182 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
99 eqid 2730 . . . . . 6 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
10099fmpo 8056 . . . . 5 (∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
10198, 100sylib 218 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
1026, 6mpoex 8067 . . . . . . 7 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
10399mpofun 7520 . . . . . . 7 Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
104102, 103, 333pm3.2i 1340 . . . . . 6 ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V)
105104a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V))
10668fsuppimpd 9338 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin)
10775fsuppimpd 9338 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin)
108 xpfi 9287 . . . . . 6 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
109106, 107, 108syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
1101, 3, 2, 14, 23, 30, 7, 7evlslem4 21989 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))
111 suppssfifsupp 9349 . . . . 5 ((((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin ∧ ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
112105, 109, 110, 111syl12anc 836 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
1131, 3, 80, 86, 88, 92, 101, 112gsummhm 19874 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1149ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝐼𝑊)
11510ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑅 ∈ CRing)
116 eqid 2730 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
117 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑗𝐷)
118 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑖𝐷)
11921adantrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑥𝑗) ∈ (Base‘𝑅))
12028adantrl 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑦𝑖) ∈ (Base‘𝑅))
1218, 4, 15, 16, 114, 115, 2, 116, 117, 118, 119, 120mplmon2mul 21982 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 )))
122121fveq2d 6869 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))))
123 evlslem2.e2 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
124123anassrs 467 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗f + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
125122, 124eqtrd 2765 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
1261253impb 1114 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷𝑖𝐷) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
127126mpoeq3dva 7473 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
128127oveq2d 7410 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
129 eqidd 2731 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
130 eqid 2730 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
1311, 130ghmf 19158 . . . . . . . . 9 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆))
13289, 131syl 17 . . . . . . . 8 (𝜑𝐸:𝐵⟶(Base‘𝑆))
133132feqmptd 6936 . . . . . . 7 (𝜑𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
134133adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
135 fveq2 6865 . . . . . 6 (𝑧 = ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) → (𝐸𝑧) = (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
13697, 129, 134, 135fmpoco 8083 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
137136oveq2d 7410 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
138 eqidd 2731 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
139 fveq2 6865 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
14023, 138, 134, 139fmptco 7108 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) = (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
141140oveq2d 7410 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
142 eqidd 2731 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
143 fveq2 6865 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
14430, 142, 134, 143fmptco 7108 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
145144oveq2d 7410 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
146141, 145oveq12d 7412 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
147 evlslem2.m . . . . . 6 · = (.r𝑆)
148 eqid 2730 . . . . . 6 (0g𝑆) = (0g𝑆)
149132ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
150149, 23ffvelcdmd 7064 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) ∈ (Base‘𝑆))
151132ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
152151, 30ffvelcdmd 7064 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ (Base‘𝑆))
1536mptex 7204 . . . . . . . . 9 (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V
154 funmpt 6562 . . . . . . . . 9 Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
155 fvex 6878 . . . . . . . . 9 (0g𝑆) ∈ V
156153, 154, 1553pm3.2i 1340 . . . . . . . 8 ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V)
157156a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V))
158 ssidd 3978 . . . . . . . . 9 (𝜑 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
1593, 148ghmid 19160 . . . . . . . . . 10 (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g𝑃)) = (0g𝑆))
16089, 159syl 17 . . . . . . . . 9 (𝜑 → (𝐸‘(0g𝑃)) = (0g𝑆))
1616mptex 7204 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V
162161a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V)
16333a1i 11 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ V)
164158, 160, 162, 163suppssfv 8190 . . . . . . . 8 (𝜑 → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
165164adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
166 suppssfifsupp 9349 . . . . . . 7 ((((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
167157, 106, 165, 166syl12anc 836 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
1686mptex 7204 . . . . . . . . 9 (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
169 funmpt 6562 . . . . . . . . 9 Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
170168, 169, 1553pm3.2i 1340 . . . . . . . 8 ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V)
171170a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V))
172 ssidd 3978 . . . . . . . . 9 (𝜑 → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
1736mptex 7204 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V
174173a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V)
175172, 160, 174, 163suppssfv 8190 . . . . . . . 8 (𝜑 → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
176175adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
177 suppssfifsupp 9349 . . . . . . 7 ((((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
178171, 107, 176, 177syl12anc 836 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
179130, 147, 148, 7, 7, 84, 150, 152, 167, 178gsumdixp 20234 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
180146, 179eqtrd 2765 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
181128, 137, 1803eqtr4d 2775 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
18277, 113, 1813eqtr2d 2771 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1839adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑊)
18412adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
1858, 4, 15, 1, 183, 184, 19mplcoe4 21984 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
1868, 4, 15, 1, 183, 184, 26mplcoe4 21984 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
187185, 186oveq12d 7412 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) = ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
188187fveq2d 6869 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
189185fveq2d 6869 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
19023fmpttd 7094 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))):𝐷𝐵)
1911, 3, 80, 86, 7, 92, 190, 68gsummhm 19874 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
192189, 191eqtr4d 2768 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
193186fveq2d 6869 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
19430fmpttd 7094 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))):𝐷𝐵)
1951, 3, 80, 86, 7, 92, 194, 75gsummhm 19874 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
196193, 195eqtr4d 2768 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
197192, 196oveq12d 7412 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥) · (𝐸𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
198182, 188, 1973eqtr4d 2775 1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3046  {crab 3411  Vcvv 3455  cdif 3919  wss 3922  ifcif 4496  {csn 4597   class class class wbr 5115  cmpt 5196   × cxp 5644  ccnv 5645  cima 5649  ccom 5650  Fun wfun 6513  wf 6515  cfv 6519  (class class class)co 7394  cmpo 7396  f cof 7658   supp csupp 8148  m cmap 8803  Fincfn 8922   finSupp cfsupp 9330   + caddc 11089  cn 12197  0cn0 12458  Basecbs 17185  .rcmulr 17227  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667   MndHom cmhm 18714  Grpcgrp 18871   GrpHom cghm 19150  CMndccmn 19716  Ringcrg 20148  CRingccrg 20149   mPoly cmpl 21821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-ofr 7661  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-sup 9411  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-fzo 13629  df-seq 13977  df-hash 14306  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-assa 21768  df-psr 21824  df-mpl 21826
This theorem is referenced by:  evlslem1  21995
  Copyright terms: Public domain W3C validator