MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Structured version   Visualization version   GIF version

Theorem sylow2b 19543
Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.hp (𝜑𝑃 pGrp (𝐺s 𝐻))
sylow2b.kn (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
sylow2b.d = (-g𝐺)
Assertion
Ref Expression
sylow2b (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐺   𝑔,𝐾,𝑥   + ,𝑔,𝑥   𝜑,𝑔   𝑥,   𝑔,𝐻,𝑥   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2b
Dummy variables 𝑠 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2 𝑋 = (Base‘𝐺)
2 sylow2b.xf . 2 (𝜑𝑋 ∈ Fin)
3 sylow2b.h . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
4 sylow2b.k . 2 (𝜑𝐾 ∈ (SubGrp‘𝐺))
5 sylow2b.a . 2 + = (+g𝐺)
6 eqid 2726 . 2 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
7 oveq2 7413 . . . . . 6 (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧))
87cbvmptv 5254 . . . . 5 (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑢 + 𝑧))
9 oveq1 7412 . . . . . 6 (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧))
109mpteq2dv 5243 . . . . 5 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢 + 𝑧)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
118, 10eqtrid 2778 . . . 4 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
1211rneqd 5931 . . 3 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧𝑣 ↦ (𝑥 + 𝑧)))
13 mpteq1 5234 . . . 4 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥 + 𝑧)) = (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1413rneqd 5931 . . 3 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1512, 14cbvmpov 7500 . 2 (𝑢𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠𝑣 ↦ (𝑢 + 𝑠))) = (𝑥𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
16 sylow2b.hp . 2 (𝜑𝑃 pGrp (𝐺s 𝐻))
17 sylow2b.kn . 2 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
18 sylow2b.d . 2 = (-g𝐺)
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 19542 1 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wrex 3064  wss 3943   class class class wbr 5141  cmpt 5224  ran crn 5670  cfv 6537  (class class class)co 7405  cmpo 7407   / cqs 8704  Fincfn 8941  cexp 14032  chash 14295   pCnt cpc 16778  Basecbs 17153  s cress 17182  +gcplusg 17206  -gcsg 18865  SubGrpcsubg 19047   ~QG cqg 19049   pGrp cpgp 19446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-q 12937  df-rp 12981  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-dvds 16205  df-gcd 16443  df-prm 16616  df-pc 16779  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-grp 18866  df-minusg 18867  df-sbg 18868  df-mulg 18996  df-subg 19050  df-eqg 19052  df-ga 19206  df-od 19448  df-pgp 19450
This theorem is referenced by:  slwhash  19544  sylow2  19546
  Copyright terms: Public domain W3C validator