|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sylow2b | Structured version Visualization version GIF version | ||
| Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| sylow2b.x | ⊢ 𝑋 = (Base‘𝐺) | 
| sylow2b.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) | 
| sylow2b.h | ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | 
| sylow2b.k | ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | 
| sylow2b.a | ⊢ + = (+g‘𝐺) | 
| sylow2b.hp | ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | 
| sylow2b.kn | ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| sylow2b.d | ⊢ − = (-g‘𝐺) | 
| Ref | Expression | 
|---|---|
| sylow2b | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylow2b.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | sylow2b.xf | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | sylow2b.h | . 2 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 4 | sylow2b.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 5 | sylow2b.a | . 2 ⊢ + = (+g‘𝐺) | |
| 6 | eqid 2736 | . 2 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
| 7 | oveq2 7440 | . . . . . 6 ⊢ (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧)) | |
| 8 | 7 | cbvmptv 5254 | . . . . 5 ⊢ (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) | 
| 9 | oveq1 7439 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧)) | |
| 10 | 9 | mpteq2dv 5243 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) | 
| 11 | 8, 10 | eqtrid 2788 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) | 
| 12 | 11 | rneqd 5948 | . . 3 ⊢ (𝑢 = 𝑥 → ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) | 
| 13 | mpteq1 5234 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | |
| 14 | 13 | rneqd 5948 | . . 3 ⊢ (𝑣 = 𝑦 → ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | 
| 15 | 12, 14 | cbvmpov 7529 | . 2 ⊢ (𝑢 ∈ 𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠))) = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | 
| 16 | sylow2b.hp | . 2 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | |
| 17 | sylow2b.kn | . 2 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | |
| 18 | sylow2b.d | . 2 ⊢ − = (-g‘𝐺) | |
| 19 | 1, 2, 3, 4, 5, 6, 15, 16, 17, 18 | sylow2blem3 19641 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 ↦ cmpt 5224 ran crn 5685 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 / cqs 8745 Fincfn 8986 ↑cexp 14103 ♯chash 14370 pCnt cpc 16875 Basecbs 17248 ↾s cress 17275 +gcplusg 17298 -gcsg 18954 SubGrpcsubg 19139 ~QG cqg 19141 pGrp cpgp 19545 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-ec 8748 df-qs 8752 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-acn 9983 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-dvds 16292 df-gcd 16533 df-prm 16710 df-pc 16876 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-eqg 19144 df-ga 19309 df-od 19547 df-pgp 19549 | 
| This theorem is referenced by: slwhash 19643 sylow2 19645 | 
| Copyright terms: Public domain | W3C validator |