| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow2b | Structured version Visualization version GIF version | ||
| Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow2b.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow2b.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow2b.h | ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| sylow2b.k | ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| sylow2b.a | ⊢ + = (+g‘𝐺) |
| sylow2b.hp | ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| sylow2b.kn | ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| sylow2b.d | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| sylow2b | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow2b.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | sylow2b.xf | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | sylow2b.h | . 2 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 4 | sylow2b.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 5 | sylow2b.a | . 2 ⊢ + = (+g‘𝐺) | |
| 6 | eqid 2734 | . 2 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
| 7 | oveq2 7407 | . . . . . 6 ⊢ (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧)) | |
| 8 | 7 | cbvmptv 5222 | . . . . 5 ⊢ (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) |
| 9 | oveq1 7406 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧)) | |
| 10 | 9 | mpteq2dv 5212 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 11 | 8, 10 | eqtrid 2781 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 12 | 11 | rneqd 5915 | . . 3 ⊢ (𝑢 = 𝑥 → ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 13 | mpteq1 5206 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | |
| 14 | 13 | rneqd 5915 | . . 3 ⊢ (𝑣 = 𝑦 → ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
| 15 | 12, 14 | cbvmpov 7496 | . 2 ⊢ (𝑢 ∈ 𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠))) = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
| 16 | sylow2b.hp | . 2 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | |
| 17 | sylow2b.kn | . 2 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | |
| 18 | sylow2b.d | . 2 ⊢ − = (-g‘𝐺) | |
| 19 | 1, 2, 3, 4, 5, 6, 15, 16, 17, 18 | sylow2blem3 19588 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3924 class class class wbr 5116 ↦ cmpt 5198 ran crn 5652 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 / cqs 8712 Fincfn 8953 ↑cexp 14068 ♯chash 14336 pCnt cpc 16841 Basecbs 17213 ↾s cress 17236 +gcplusg 17256 -gcsg 18903 SubGrpcsubg 19088 ~QG cqg 19090 pGrp cpgp 19492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-disj 5084 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-omul 8479 df-er 8713 df-ec 8715 df-qs 8719 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9448 df-inf 9449 df-oi 9516 df-dju 9907 df-card 9945 df-acn 9948 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-xnn0 12567 df-z 12581 df-uz 12845 df-q 12957 df-rp 13001 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-clim 15491 df-sum 15690 df-dvds 16258 df-gcd 16499 df-prm 16676 df-pc 16842 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-eqg 19093 df-ga 19258 df-od 19494 df-pgp 19496 |
| This theorem is referenced by: slwhash 19590 sylow2 19592 |
| Copyright terms: Public domain | W3C validator |