MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Structured version   Visualization version   GIF version

Theorem sylow2b 19585
Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.hp (𝜑𝑃 pGrp (𝐺s 𝐻))
sylow2b.kn (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
sylow2b.d = (-g𝐺)
Assertion
Ref Expression
sylow2b (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐺   𝑔,𝐾,𝑥   + ,𝑔,𝑥   𝜑,𝑔   𝑥,   𝑔,𝐻,𝑥   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2b
Dummy variables 𝑠 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2 𝑋 = (Base‘𝐺)
2 sylow2b.xf . 2 (𝜑𝑋 ∈ Fin)
3 sylow2b.h . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
4 sylow2b.k . 2 (𝜑𝐾 ∈ (SubGrp‘𝐺))
5 sylow2b.a . 2 + = (+g𝐺)
6 eqid 2728 . 2 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
7 oveq2 7434 . . . . . 6 (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧))
87cbvmptv 5265 . . . . 5 (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑢 + 𝑧))
9 oveq1 7433 . . . . . 6 (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧))
109mpteq2dv 5254 . . . . 5 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢 + 𝑧)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
118, 10eqtrid 2780 . . . 4 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
1211rneqd 5944 . . 3 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧𝑣 ↦ (𝑥 + 𝑧)))
13 mpteq1 5245 . . . 4 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥 + 𝑧)) = (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1413rneqd 5944 . . 3 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1512, 14cbvmpov 7521 . 2 (𝑢𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠𝑣 ↦ (𝑢 + 𝑠))) = (𝑥𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
16 sylow2b.hp . 2 (𝜑𝑃 pGrp (𝐺s 𝐻))
17 sylow2b.kn . 2 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
18 sylow2b.d . 2 = (-g𝐺)
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 19584 1 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wrex 3067  wss 3949   class class class wbr 5152  cmpt 5235  ran crn 5683  cfv 6553  (class class class)co 7426  cmpo 7428   / cqs 8730  Fincfn 8970  cexp 14066  chash 14329   pCnt cpc 16812  Basecbs 17187  s cress 17216  +gcplusg 17240  -gcsg 18899  SubGrpcsubg 19082   ~QG cqg 19084   pGrp cpgp 19488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-omul 8498  df-er 8731  df-ec 8733  df-qs 8737  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-acn 9973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673  df-dvds 16239  df-gcd 16477  df-prm 16650  df-pc 16813  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-eqg 19087  df-ga 19248  df-od 19490  df-pgp 19492
This theorem is referenced by:  slwhash  19586  sylow2  19588
  Copyright terms: Public domain W3C validator