| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow2b | Structured version Visualization version GIF version | ||
| Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃↑𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow2b.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow2b.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow2b.h | ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| sylow2b.k | ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| sylow2b.a | ⊢ + = (+g‘𝐺) |
| sylow2b.hp | ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| sylow2b.kn | ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| sylow2b.d | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| sylow2b | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow2b.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | sylow2b.xf | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | sylow2b.h | . 2 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 4 | sylow2b.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 5 | sylow2b.a | . 2 ⊢ + = (+g‘𝐺) | |
| 6 | eqid 2731 | . 2 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
| 7 | oveq2 7354 | . . . . . 6 ⊢ (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧)) | |
| 8 | 7 | cbvmptv 5195 | . . . . 5 ⊢ (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) |
| 9 | oveq1 7353 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧)) | |
| 10 | 9 | mpteq2dv 5185 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑧 ∈ 𝑣 ↦ (𝑢 + 𝑧)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 11 | 8, 10 | eqtrid 2778 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 12 | 11 | rneqd 5878 | . . 3 ⊢ (𝑢 = 𝑥 → ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧))) |
| 13 | mpteq1 5180 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) | |
| 14 | 13 | rneqd 5878 | . . 3 ⊢ (𝑣 = 𝑦 → ran (𝑧 ∈ 𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
| 15 | 12, 14 | cbvmpov 7441 | . 2 ⊢ (𝑢 ∈ 𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠 ∈ 𝑣 ↦ (𝑢 + 𝑠))) = (𝑥 ∈ 𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
| 16 | sylow2b.hp | . 2 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | |
| 17 | sylow2b.kn | . 2 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | |
| 18 | sylow2b.d | . 2 ⊢ − = (-g‘𝐺) | |
| 19 | 1, 2, 3, 4, 5, 6, 15, 16, 17, 18 | sylow2blem3 19532 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 / cqs 8621 Fincfn 8869 ↑cexp 13965 ♯chash 14234 pCnt cpc 16745 Basecbs 17117 ↾s cress 17138 +gcplusg 17158 -gcsg 18845 SubGrpcsubg 19030 ~QG cqg 19032 pGrp cpgp 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-eqg 19035 df-ga 19200 df-od 19438 df-pgp 19440 |
| This theorem is referenced by: slwhash 19534 sylow2 19536 |
| Copyright terms: Public domain | W3C validator |