MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Structured version   Visualization version   GIF version

Theorem sylow2b 18388
Description: Sylow's second theorem. Any 𝑃-group 𝐻 is a subgroup of a conjugated 𝑃-group 𝐾 of order 𝑃𝑛 ∥ (♯‘𝑋) with 𝑛 maximal. This is usually stated under the assumption that 𝐾 is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.hp (𝜑𝑃 pGrp (𝐺s 𝐻))
sylow2b.kn (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
sylow2b.d = (-g𝐺)
Assertion
Ref Expression
sylow2b (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐺   𝑔,𝐾,𝑥   + ,𝑔,𝑥   𝜑,𝑔   𝑥,   𝑔,𝐻,𝑥   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2b
Dummy variables 𝑠 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2 𝑋 = (Base‘𝐺)
2 sylow2b.xf . 2 (𝜑𝑋 ∈ Fin)
3 sylow2b.h . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
4 sylow2b.k . 2 (𝜑𝐾 ∈ (SubGrp‘𝐺))
5 sylow2b.a . 2 + = (+g𝐺)
6 eqid 2824 . 2 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
7 oveq2 6912 . . . . . 6 (𝑠 = 𝑧 → (𝑢 + 𝑠) = (𝑢 + 𝑧))
87cbvmptv 4972 . . . . 5 (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑢 + 𝑧))
9 oveq1 6911 . . . . . 6 (𝑢 = 𝑥 → (𝑢 + 𝑧) = (𝑥 + 𝑧))
109mpteq2dv 4967 . . . . 5 (𝑢 = 𝑥 → (𝑧𝑣 ↦ (𝑢 + 𝑧)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
118, 10syl5eq 2872 . . . 4 (𝑢 = 𝑥 → (𝑠𝑣 ↦ (𝑢 + 𝑠)) = (𝑧𝑣 ↦ (𝑥 + 𝑧)))
1211rneqd 5584 . . 3 (𝑢 = 𝑥 → ran (𝑠𝑣 ↦ (𝑢 + 𝑠)) = ran (𝑧𝑣 ↦ (𝑥 + 𝑧)))
13 mpteq1 4959 . . . 4 (𝑣 = 𝑦 → (𝑧𝑣 ↦ (𝑥 + 𝑧)) = (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1413rneqd 5584 . . 3 (𝑣 = 𝑦 → ran (𝑧𝑣 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
1512, 14cbvmpt2v 6994 . 2 (𝑢𝐻, 𝑣 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑠𝑣 ↦ (𝑢 + 𝑠))) = (𝑥𝐻, 𝑦 ∈ (𝑋 / (𝐺 ~QG 𝐾)) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
16 sylow2b.hp . 2 (𝜑𝑃 pGrp (𝐺s 𝐻))
17 sylow2b.kn . 2 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
18 sylow2b.d . 2 = (-g𝐺)
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 18387 1 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wrex 3117  wss 3797   class class class wbr 4872  cmpt 4951  ran crn 5342  cfv 6122  (class class class)co 6904  cmpt2 6906   / cqs 8007  Fincfn 8221  cexp 13153  chash 13409   pCnt cpc 15911  Basecbs 16221  s cress 16222  +gcplusg 16304  -gcsg 17777  SubGrpcsubg 17938   ~QG cqg 17940   pGrp cpgp 18296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-disj 4841  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-omul 7830  df-er 8008  df-ec 8010  df-qs 8014  df-map 8123  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-inf 8617  df-oi 8683  df-card 9077  df-acn 9080  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-n0 11618  df-xnn0 11690  df-z 11704  df-uz 11968  df-q 12071  df-rp 12112  df-fz 12619  df-fzo 12760  df-fl 12887  df-mod 12963  df-seq 13095  df-exp 13154  df-fac 13353  df-bc 13382  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-clim 14595  df-sum 14793  df-dvds 15357  df-gcd 15589  df-prm 15757  df-pc 15912  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-submnd 17688  df-grp 17778  df-minusg 17779  df-sbg 17780  df-mulg 17894  df-subg 17941  df-eqg 17943  df-ga 18072  df-od 18298  df-pgp 18300
This theorem is referenced by:  slwhash  18389  sylow2  18391
  Copyright terms: Public domain W3C validator