Step | Hyp | Ref
| Expression |
1 | | evl1gsumd.m |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) |
2 | | evl1gsumd.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
3 | | raleq 3341 |
. . . . . . 7
⊢ (𝑛 = ∅ → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈)) |
4 | 3 | anbi2d 629 |
. . . . . 6
⊢ (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈))) |
5 | | mpteq1 5172 |
. . . . . . . . . 10
⊢ (𝑛 = ∅ → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ ∅ ↦ 𝑀)) |
6 | 5 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → (𝑃 Σg
(𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) |
7 | 6 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))) |
8 | 7 | fveq1d 6771 |
. . . . . . 7
⊢ (𝑛 = ∅ → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌)) |
9 | | mpteq1 5172 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌))) |
10 | 9 | oveq2d 7285 |
. . . . . . 7
⊢ (𝑛 = ∅ → (𝑅 Σg
(𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
11 | 8, 10 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑛 = ∅ → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌))))) |
12 | 4, 11 | imbi12d 345 |
. . . . 5
⊢ (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))))) |
13 | | raleq 3341 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈)) |
14 | 13 | anbi2d 629 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈))) |
15 | | mpteq1 5172 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ 𝑚 ↦ 𝑀)) |
16 | 15 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀))) |
17 | 16 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))) |
18 | 17 | fveq1d 6771 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌)) |
19 | | mpteq1 5172 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))) |
20 | 19 | oveq2d 7285 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) |
21 | 18, 20 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))))) |
22 | 14, 21 | imbi12d 345 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
23 | | raleq 3341 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈)) |
24 | 23 | anbi2d 629 |
. . . . . 6
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈))) |
25 | | mpteq1 5172 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) |
26 | 25 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) |
27 | 26 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))) |
28 | 27 | fveq1d 6771 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌)) |
29 | | mpteq1 5172 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))) |
30 | 29 | oveq2d 7285 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))) |
31 | 28, 30 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))) |
32 | 24, 31 | imbi12d 345 |
. . . . 5
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
33 | | raleq 3341 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈)) |
34 | 33 | anbi2d 629 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈))) |
35 | | mpteq1 5172 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ 𝑁 ↦ 𝑀)) |
36 | 35 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀))) |
37 | 36 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))) |
38 | 37 | fveq1d 6771 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌)) |
39 | | mpteq1 5172 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))) |
40 | 39 | oveq2d 7285 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) |
41 | 38, 40 | eqeq12d 2756 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
42 | 34, 41 | imbi12d 345 |
. . . . 5
⊢ (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
43 | | mpt0 6572 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∅ ↦ 𝑀) = ∅ |
44 | 43 | oveq2i 7280 |
. . . . . . . . . . . 12
⊢ (𝑃 Σg
(𝑥 ∈ ∅ ↦
𝑀)) = (𝑃 Σg
∅) |
45 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑃) = (0g‘𝑃) |
46 | 45 | gsum0 18364 |
. . . . . . . . . . . 12
⊢ (𝑃 Σg
∅) = (0g‘𝑃) |
47 | 44, 46 | eqtri 2768 |
. . . . . . . . . . 11
⊢ (𝑃 Σg
(𝑥 ∈ ∅ ↦
𝑀)) =
(0g‘𝑃) |
48 | 47 | fveq2i 6772 |
. . . . . . . . . 10
⊢ (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(0g‘𝑃)) |
49 | | evl1gsumd.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ CRing) |
50 | | crngring 19791 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) |
52 | | evl1gsumd.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (Poly1‘𝑅) |
53 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
54 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) = (0g‘𝑅) |
55 | 52, 53, 54, 45 | ply1scl0 21457 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
56 | 51, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
57 | 56 | eqcomd 2746 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑃) = ((algSc‘𝑃)‘(0g‘𝑅))) |
58 | 57 | fveq2d 6773 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(0g‘𝑃)) = (𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))) |
59 | 48, 58 | eqtrid 2792 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))) |
60 | 59 | fveq1d 6771 |
. . . . . . . 8
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌)) |
61 | | evl1gsumd.q |
. . . . . . . . . 10
⊢ 𝑂 = (eval1‘𝑅) |
62 | | evl1gsumd.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
63 | | evl1gsumd.u |
. . . . . . . . . 10
⊢ 𝑈 = (Base‘𝑃) |
64 | | ringgrp 19784 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
65 | 51, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Grp) |
66 | 62, 54 | grpidcl 18603 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp →
(0g‘𝑅)
∈ 𝐵) |
67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑅) ∈ 𝐵) |
68 | | evl1gsumd.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
69 | 61, 52, 62, 53, 63, 49, 67, 68 | evl1scad 21497 |
. . . . . . . . 9
⊢ (𝜑 → (((algSc‘𝑃)‘(0g‘𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌) = (0g‘𝑅))) |
70 | 69 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌) = (0g‘𝑅)) |
71 | 60, 70 | eqtrd 2780 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (0g‘𝑅)) |
72 | | mpt0 6572 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)) = ∅ |
73 | 72 | oveq2i 7280 |
. . . . . . . 8
⊢ (𝑅 Σg
(𝑥 ∈ ∅ ↦
((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg
∅) |
74 | 54 | gsum0 18364 |
. . . . . . . 8
⊢ (𝑅 Σg
∅) = (0g‘𝑅) |
75 | 73, 74 | eqtri 2768 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑥 ∈ ∅ ↦
((𝑂‘𝑀)‘𝑌))) = (0g‘𝑅) |
76 | 71, 75 | eqtr4di 2798 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
77 | 76 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
78 | 61, 52, 62, 63, 49, 68 | evl1gsumdlem 21518 |
. . . . . . . 8
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
79 | 78 | 3expia 1120 |
. . . . . . 7
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → (𝜑 → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))))) |
80 | 79 | a2d 29 |
. . . . . 6
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → ((𝜑 → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))))) |
81 | | impexp 451 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
82 | | impexp 451 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
83 | 80, 81, 82 | 3imtr4g 296 |
. . . . 5
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → (((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
84 | 12, 22, 32, 42, 77, 83 | findcard2s 8928 |
. . . 4
⊢ (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
85 | 84 | expd 416 |
. . 3
⊢ (𝑁 ∈ Fin → (𝜑 → (∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
86 | 2, 85 | mpcom 38 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
87 | 1, 86 | mpd 15 |
1
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) |