MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumd Structured version   Visualization version   GIF version

Theorem evl1gsumd 22361
Description: Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
evl1gsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gsumd (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1gsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
2 evl1gsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3323 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ ∅ 𝑀𝑈))
43anbi2d 630 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈)))
5 mpteq1 5235 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 7447 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6910 . . . . . . . 8 (𝑛 = ∅ → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6908 . . . . . . 7 (𝑛 = ∅ → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
9 mpteq1 5235 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
109oveq2d 7447 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
118, 10eqeq12d 2753 . . . . . 6 (𝑛 = ∅ → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
124, 11imbi12d 344 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))))
13 raleq 3323 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑚 𝑀𝑈))
1413anbi2d 630 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝑈)))
15 mpteq1 5235 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6910 . . . . . . . 8 (𝑛 = 𝑚 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6908 . . . . . . 7 (𝑛 = 𝑚 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
19 mpteq1 5235 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 7447 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2753 . . . . . 6 (𝑛 = 𝑚 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))))
2214, 21imbi12d 344 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
23 raleq 3323 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈))
2423anbi2d 630 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈)))
25 mpteq1 5235 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 7447 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6910 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6908 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌))
29 mpteq1 5235 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))
3029oveq2d 7447 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
3128, 30eqeq12d 2753 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
3224, 31imbi12d 344 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
33 raleq 3323 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑁 𝑀𝑈))
3433anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝑈)))
35 mpteq1 5235 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6910 . . . . . . . 8 (𝑛 = 𝑁 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6908 . . . . . . 7 (𝑛 = 𝑁 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌))
39 mpteq1 5235 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
4039oveq2d 7447 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
4138, 40eqeq12d 2753 . . . . . 6 (𝑛 = 𝑁 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
4234, 41imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
43 mpt0 6710 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 7442 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2737 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 18697 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2765 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6909 . . . . . . . . . 10 (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(0g𝑃))
49 evl1gsumd.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
50 crngring 20242 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
52 evl1gsumd.p . . . . . . . . . . . . . 14 𝑃 = (Poly1𝑅)
53 eqid 2737 . . . . . . . . . . . . . 14 (algSc‘𝑃) = (algSc‘𝑃)
54 eqid 2737 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5552, 53, 54, 45ply1scl0 22293 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5651, 55syl 17 . . . . . . . . . . . 12 (𝜑 → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5756eqcomd 2743 . . . . . . . . . . 11 (𝜑 → (0g𝑃) = ((algSc‘𝑃)‘(0g𝑅)))
5857fveq2d 6910 . . . . . . . . . 10 (𝜑 → (𝑂‘(0g𝑃)) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
5948, 58eqtrid 2789 . . . . . . . . 9 (𝜑 → (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
6059fveq1d 6908 . . . . . . . 8 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌))
61 evl1gsumd.q . . . . . . . . . 10 𝑂 = (eval1𝑅)
62 evl1gsumd.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
63 evl1gsumd.u . . . . . . . . . 10 𝑈 = (Base‘𝑃)
64 ringgrp 20235 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6551, 64syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Grp)
6662, 54grpidcl 18983 . . . . . . . . . . 11 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
6765, 66syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝐵)
68 evl1gsumd.y . . . . . . . . . 10 (𝜑𝑌𝐵)
6961, 52, 62, 53, 63, 49, 67, 68evl1scad 22339 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(0g𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅)))
7069simprd 495 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅))
7160, 70eqtrd 2777 . . . . . . 7 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (0g𝑅))
72 mpt0 6710 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
7372oveq2i 7442 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg ∅)
7454gsum0 18697 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
7573, 74eqtri 2765 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (0g𝑅)
7671, 75eqtr4di 2795 . . . . . 6 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7776adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7861, 52, 62, 63, 49, 68evl1gsumdlem 22360 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
79783expia 1122 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
8079a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
81 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
82 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8380, 81, 823imtr4g 296 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8412, 22, 32, 42, 77, 83findcard2s 9205 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
8584expd 415 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
862, 85mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
871, 86mpd 15 1 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cun 3949  c0 4333  {csn 4626  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  Grpcgrp 18951  Ringcrg 20230  CRingccrg 20231  algSccascl 21872  Poly1cpl1 22178  eval1ce1 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-ply1 22183  df-evl1 22320
This theorem is referenced by:  evl1gsumaddval  22363
  Copyright terms: Public domain W3C validator