MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumd Structured version   Visualization version   GIF version

Theorem evl1gsumd 20522
Description: Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
evl1gsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gsumd (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1gsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
2 evl1gsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3407 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ ∅ 𝑀𝑈))
43anbi2d 630 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈)))
5 mpteq1 5156 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 7174 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6676 . . . . . . . 8 (𝑛 = ∅ → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6674 . . . . . . 7 (𝑛 = ∅ → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
9 mpteq1 5156 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
109oveq2d 7174 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
118, 10eqeq12d 2839 . . . . . 6 (𝑛 = ∅ → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
124, 11imbi12d 347 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))))
13 raleq 3407 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑚 𝑀𝑈))
1413anbi2d 630 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝑈)))
15 mpteq1 5156 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 7174 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6676 . . . . . . . 8 (𝑛 = 𝑚 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6674 . . . . . . 7 (𝑛 = 𝑚 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
19 mpteq1 5156 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 7174 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2839 . . . . . 6 (𝑛 = 𝑚 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))))
2214, 21imbi12d 347 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
23 raleq 3407 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈))
2423anbi2d 630 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈)))
25 mpteq1 5156 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 7174 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6676 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6674 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌))
29 mpteq1 5156 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))
3029oveq2d 7174 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
3128, 30eqeq12d 2839 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
3224, 31imbi12d 347 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
33 raleq 3407 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑁 𝑀𝑈))
3433anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝑈)))
35 mpteq1 5156 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 7174 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6676 . . . . . . . 8 (𝑛 = 𝑁 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6674 . . . . . . 7 (𝑛 = 𝑁 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌))
39 mpteq1 5156 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
4039oveq2d 7174 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
4138, 40eqeq12d 2839 . . . . . 6 (𝑛 = 𝑁 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
4234, 41imbi12d 347 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
43 mpt0 6492 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 7169 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2823 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 17896 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2846 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6675 . . . . . . . . . 10 (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(0g𝑃))
49 evl1gsumd.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
50 crngring 19310 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
52 evl1gsumd.p . . . . . . . . . . . . . 14 𝑃 = (Poly1𝑅)
53 eqid 2823 . . . . . . . . . . . . . 14 (algSc‘𝑃) = (algSc‘𝑃)
54 eqid 2823 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5552, 53, 54, 45ply1scl0 20460 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5651, 55syl 17 . . . . . . . . . . . 12 (𝜑 → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5756eqcomd 2829 . . . . . . . . . . 11 (𝜑 → (0g𝑃) = ((algSc‘𝑃)‘(0g𝑅)))
5857fveq2d 6676 . . . . . . . . . 10 (𝜑 → (𝑂‘(0g𝑃)) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
5948, 58syl5eq 2870 . . . . . . . . 9 (𝜑 → (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
6059fveq1d 6674 . . . . . . . 8 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌))
61 evl1gsumd.q . . . . . . . . . 10 𝑂 = (eval1𝑅)
62 evl1gsumd.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
63 evl1gsumd.u . . . . . . . . . 10 𝑈 = (Base‘𝑃)
64 ringgrp 19304 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6551, 64syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Grp)
6662, 54grpidcl 18133 . . . . . . . . . . 11 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
6765, 66syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝐵)
68 evl1gsumd.y . . . . . . . . . 10 (𝜑𝑌𝐵)
6961, 52, 62, 53, 63, 49, 67, 68evl1scad 20500 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(0g𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅)))
7069simprd 498 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅))
7160, 70eqtrd 2858 . . . . . . 7 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (0g𝑅))
72 mpt0 6492 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
7372oveq2i 7169 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg ∅)
7454gsum0 17896 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
7573, 74eqtri 2846 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (0g𝑅)
7671, 75syl6eqr 2876 . . . . . 6 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7776adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7861, 52, 62, 63, 49, 68evl1gsumdlem 20521 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
79783expia 1117 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
8079a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
81 impexp 453 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
82 impexp 453 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8380, 81, 823imtr4g 298 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8412, 22, 32, 42, 77, 83findcard2s 8761 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
8584expd 418 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
862, 85mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
871, 86mpd 15 1 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cun 3936  c0 4293  {csn 4569  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  Basecbs 16485  0gc0g 16715   Σg cgsu 16716  Grpcgrp 18105  Ringcrg 19299  CRingccrg 19300  algSccascl 20086  Poly1cpl1 20347  eval1ce1 20479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-cring 19302  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-assa 20087  df-asp 20088  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-evls 20288  df-evl 20289  df-psr1 20350  df-ply1 20352  df-evl1 20481
This theorem is referenced by:  evl1gsumaddval  20524
  Copyright terms: Public domain W3C validator