| Step | Hyp | Ref
| Expression |
| 1 | | evl1gsumd.m |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) |
| 2 | | evl1gsumd.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 3 | | raleq 3323 |
. . . . . . 7
⊢ (𝑛 = ∅ → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈)) |
| 4 | 3 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈))) |
| 5 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑛 = ∅ → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ ∅ ↦ 𝑀)) |
| 6 | 5 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → (𝑃 Σg
(𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) |
| 7 | 6 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))) |
| 8 | 7 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑛 = ∅ → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌)) |
| 9 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌))) |
| 10 | 9 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑛 = ∅ → (𝑅 Σg
(𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 11 | 8, 10 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑛 = ∅ → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 12 | 4, 11 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 13 | | raleq 3323 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈)) |
| 14 | 13 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈))) |
| 15 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ 𝑚 ↦ 𝑀)) |
| 16 | 15 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀))) |
| 17 | 16 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))) |
| 18 | 17 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌)) |
| 19 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))) |
| 20 | 19 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 21 | 18, 20 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 22 | 14, 21 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 23 | | raleq 3323 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈)) |
| 24 | 23 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈))) |
| 25 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) |
| 26 | 25 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) |
| 27 | 26 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))) |
| 28 | 27 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌)) |
| 29 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))) |
| 30 | 29 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 31 | 28, 30 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 32 | 24, 31 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 33 | | raleq 3323 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈)) |
| 34 | 33 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈))) |
| 35 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑛 ↦ 𝑀) = (𝑥 ∈ 𝑁 ↦ 𝑀)) |
| 36 | 35 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀))) |
| 37 | 36 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))) |
| 38 | 37 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌)) |
| 39 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))) |
| 40 | 39 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 41 | 38, 40 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 42 | 34, 41 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥 ∈ 𝑛 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑛 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑛 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 43 | | mpt0 6710 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∅ ↦ 𝑀) = ∅ |
| 44 | 43 | oveq2i 7442 |
. . . . . . . . . . . 12
⊢ (𝑃 Σg
(𝑥 ∈ ∅ ↦
𝑀)) = (𝑃 Σg
∅) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 46 | 45 | gsum0 18697 |
. . . . . . . . . . . 12
⊢ (𝑃 Σg
∅) = (0g‘𝑃) |
| 47 | 44, 46 | eqtri 2765 |
. . . . . . . . . . 11
⊢ (𝑃 Σg
(𝑥 ∈ ∅ ↦
𝑀)) =
(0g‘𝑃) |
| 48 | 47 | fveq2i 6909 |
. . . . . . . . . 10
⊢ (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(0g‘𝑃)) |
| 49 | | evl1gsumd.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 50 | | crngring 20242 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 52 | | evl1gsumd.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (Poly1‘𝑅) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 54 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 55 | 52, 53, 54, 45 | ply1scl0 22293 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 56 | 51, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 57 | 56 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑃) = ((algSc‘𝑃)‘(0g‘𝑅))) |
| 58 | 57 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(0g‘𝑃)) = (𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))) |
| 59 | 48, 58 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))) |
| 60 | 59 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌)) |
| 61 | | evl1gsumd.q |
. . . . . . . . . 10
⊢ 𝑂 = (eval1‘𝑅) |
| 62 | | evl1gsumd.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
| 63 | | evl1gsumd.u |
. . . . . . . . . 10
⊢ 𝑈 = (Base‘𝑃) |
| 64 | | ringgrp 20235 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 65 | 51, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 66 | 62, 54 | grpidcl 18983 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp →
(0g‘𝑅)
∈ 𝐵) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑅) ∈ 𝐵) |
| 68 | | evl1gsumd.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 69 | 61, 52, 62, 53, 63, 49, 67, 68 | evl1scad 22339 |
. . . . . . . . 9
⊢ (𝜑 → (((algSc‘𝑃)‘(0g‘𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌) = (0g‘𝑅))) |
| 70 | 69 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(0g‘𝑅)))‘𝑌) = (0g‘𝑅)) |
| 71 | 60, 70 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (0g‘𝑅)) |
| 72 | | mpt0 6710 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)) = ∅ |
| 73 | 72 | oveq2i 7442 |
. . . . . . . 8
⊢ (𝑅 Σg
(𝑥 ∈ ∅ ↦
((𝑂‘𝑀)‘𝑌))) = (𝑅 Σg
∅) |
| 74 | 54 | gsum0 18697 |
. . . . . . . 8
⊢ (𝑅 Σg
∅) = (0g‘𝑅) |
| 75 | 73, 74 | eqtri 2765 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑥 ∈ ∅ ↦
((𝑂‘𝑀)‘𝑌))) = (0g‘𝑅) |
| 76 | 71, 75 | eqtr4di 2795 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 77 | 76 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂‘𝑀)‘𝑌)))) |
| 78 | 61, 52, 62, 63, 49, 68 | evl1gsumdlem 22360 |
. . . . . . . 8
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 79 | 78 | 3expia 1122 |
. . . . . . 7
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → (𝜑 → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))))) |
| 80 | 79 | a2d 29 |
. . . . . 6
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → ((𝜑 → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌))))))) |
| 81 | | impexp 450 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 82 | | impexp 450 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 83 | 80, 81, 82 | 3imtr4g 296 |
. . . . 5
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚) → (((𝜑 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 84 | 12, 22, 32, 42, 77, 83 | findcard2s 9205 |
. . . 4
⊢ (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 85 | 84 | expd 415 |
. . 3
⊢ (𝑁 ∈ Fin → (𝜑 → (∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))))) |
| 86 | 2, 85 | mpcom 38 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌))))) |
| 87 | 1, 86 | mpd 15 |
1
⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) |