Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusima Structured version   Visualization version   GIF version

Theorem qusima 33355
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
qusima.b 𝐵 = (Base‘𝐺)
qusima.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
qusima.p = (LSSum‘𝐺)
qusima.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
qusima.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusima.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
qusima.h (𝜑𝐻𝑆)
qusima.s (𝜑𝑆 ⊆ (SubGrp‘𝐺))
Assertion
Ref Expression
qusima (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Distinct variable groups:   𝑥,𝐵   ,𝐹   ,𝐻,𝑥   𝑆,   𝜑,,𝑥
Allowed substitution hints:   𝐵()   (𝑥,)   𝑄(𝑥,)   𝑆(𝑥)   𝐸(𝑥,)   𝐹(𝑥)   𝐺(𝑥,)   𝑁(𝑥,)

Proof of Theorem qusima
StepHypRef Expression
1 qusima.e . 2 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
2 qusima.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
32reseq1i 5930 . . . . . 6 (𝐹𝐻) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻)
4 qusima.s . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
5 qusima.h . . . . . . . . . 10 (𝜑𝐻𝑆)
64, 5sseldd 3938 . . . . . . . . 9 (𝜑𝐻 ∈ (SubGrp‘𝐺))
7 qusima.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
87subgss 19024 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝐵)
96, 8syl 17 . . . . . . . 8 (𝜑𝐻𝐵)
109resmptd 5995 . . . . . . 7 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)))
11 qusima.p . . . . . . . . 9 = (LSSum‘𝐺)
12 qusima.n . . . . . . . . . . 11 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
13 nsgsubg 19055 . . . . . . . . . . 11 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1514adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑁 ∈ (SubGrp‘𝐺))
169sselda 3937 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑥𝐵)
177, 11, 15, 16quslsm 33352 . . . . . . . 8 ((𝜑𝑥𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
1817mpteq2dva 5188 . . . . . . 7 (𝜑 → (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
1910, 18eqtrd 2764 . . . . . 6 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
203, 19eqtr2id 2777 . . . . 5 (𝜑 → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2120adantr 480 . . . 4 ((𝜑 = 𝐻) → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2221rneqd 5884 . . 3 ((𝜑 = 𝐻) → ran (𝑥𝐻 ↦ ({𝑥} 𝑁)) = ran (𝐹𝐻))
23 mpteq1 5184 . . . . 5 ( = 𝐻 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2423rneqd 5884 . . . 4 ( = 𝐻 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2524adantl 481 . . 3 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
26 df-ima 5636 . . . 4 (𝐹𝐻) = ran (𝐹𝐻)
2726a1i 11 . . 3 ((𝜑 = 𝐻) → (𝐹𝐻) = ran (𝐹𝐻))
2822, 25, 273eqtr4d 2774 . 2 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
297fvexi 6840 . . . . 5 𝐵 ∈ V
3029mptex 7163 . . . 4 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V
312, 30eqeltri 2824 . . 3 𝐹 ∈ V
32 imaexg 7853 . . 3 (𝐹 ∈ V → (𝐹𝐻) ∈ V)
3331, 32mp1i 13 . 2 (𝜑 → (𝐹𝐻) ∈ V)
341, 28, 5, 33fvmptd2 6942 1 (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  {csn 4579  cmpt 5176  ran crn 5624  cres 5625  cima 5626  cfv 6486  (class class class)co 7353  [cec 8630  Basecbs 17138   /s cqus 17427  SubGrpcsubg 19017  NrmSGrpcnsg 19018   ~QG cqg 19019  LSSumclsm 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-ec 8634  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-nsg 19021  df-eqg 19022  df-oppg 19243  df-lsm 19533
This theorem is referenced by:  qusrn  33356  nsgmgc  33359
  Copyright terms: Public domain W3C validator