Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusima Structured version   Visualization version   GIF version

Theorem qusima 32235
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
qusima.b 𝐵 = (Base‘𝐺)
qusima.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
qusima.p = (LSSum‘𝐺)
qusima.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
qusima.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusima.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
qusima.h (𝜑𝐻𝑆)
qusima.s (𝜑𝑆 ⊆ (SubGrp‘𝐺))
Assertion
Ref Expression
qusima (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Distinct variable groups:   𝑥,𝐵   ,𝐹   ,𝐻,𝑥   𝑆,   𝜑,,𝑥
Allowed substitution hints:   𝐵()   (𝑥,)   𝑄(𝑥,)   𝑆(𝑥)   𝐸(𝑥,)   𝐹(𝑥)   𝐺(𝑥,)   𝑁(𝑥,)

Proof of Theorem qusima
StepHypRef Expression
1 qusima.e . 2 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
2 qusima.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
32reseq1i 5934 . . . . . 6 (𝐹𝐻) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻)
4 qusima.s . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
5 qusima.h . . . . . . . . . 10 (𝜑𝐻𝑆)
64, 5sseldd 3946 . . . . . . . . 9 (𝜑𝐻 ∈ (SubGrp‘𝐺))
7 qusima.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
87subgss 18934 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝐵)
96, 8syl 17 . . . . . . . 8 (𝜑𝐻𝐵)
109resmptd 5995 . . . . . . 7 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)))
11 qusima.p . . . . . . . . 9 = (LSSum‘𝐺)
12 qusima.n . . . . . . . . . . 11 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
13 nsgsubg 18965 . . . . . . . . . . 11 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1514adantr 482 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑁 ∈ (SubGrp‘𝐺))
169sselda 3945 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑥𝐵)
177, 11, 15, 16quslsm 32234 . . . . . . . 8 ((𝜑𝑥𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
1817mpteq2dva 5206 . . . . . . 7 (𝜑 → (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
1910, 18eqtrd 2773 . . . . . 6 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
203, 19eqtr2id 2786 . . . . 5 (𝜑 → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2120adantr 482 . . . 4 ((𝜑 = 𝐻) → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2221rneqd 5894 . . 3 ((𝜑 = 𝐻) → ran (𝑥𝐻 ↦ ({𝑥} 𝑁)) = ran (𝐹𝐻))
23 mpteq1 5199 . . . . 5 ( = 𝐻 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2423rneqd 5894 . . . 4 ( = 𝐻 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2524adantl 483 . . 3 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
26 df-ima 5647 . . . 4 (𝐹𝐻) = ran (𝐹𝐻)
2726a1i 11 . . 3 ((𝜑 = 𝐻) → (𝐹𝐻) = ran (𝐹𝐻))
2822, 25, 273eqtr4d 2783 . 2 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
297fvexi 6857 . . . . 5 𝐵 ∈ V
3029mptex 7174 . . . 4 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V
312, 30eqeltri 2830 . . 3 𝐹 ∈ V
32 imaexg 7853 . . 3 (𝐹 ∈ V → (𝐹𝐻) ∈ V)
3331, 32mp1i 13 . 2 (𝜑 → (𝐹𝐻) ∈ V)
341, 28, 5, 33fvmptd2 6957 1 (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  wss 3911  {csn 4587  cmpt 5189  ran crn 5635  cres 5636  cima 5637  cfv 6497  (class class class)co 7358  [cec 8649  Basecbs 17088   /s cqus 17392  SubGrpcsubg 18927  NrmSGrpcnsg 18928   ~QG cqg 18929  LSSumclsm 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-tpos 8158  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-ec 8653  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757  df-subg 18930  df-nsg 18931  df-eqg 18932  df-oppg 19129  df-lsm 19423
This theorem is referenced by:  nsgmgc  32238
  Copyright terms: Public domain W3C validator