![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusima | Structured version Visualization version GIF version |
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
Ref | Expression |
---|---|
qusima.b | ⊢ 𝐵 = (Base‘𝐺) |
qusima.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
qusima.p | ⊢ ⊕ = (LSSum‘𝐺) |
qusima.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
qusima.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
qusima.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
qusima.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
qusima.s | ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
qusima | ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusima.e | . 2 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
2 | qusima.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
3 | 2 | reseq1i 5996 | . . . . . 6 ⊢ (𝐹 ↾ 𝐻) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) |
4 | qusima.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) | |
5 | qusima.h | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3996 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
7 | qusima.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 7 | subgss 19158 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝐵) |
9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ⊆ 𝐵) |
10 | 9 | resmptd 6060 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁))) |
11 | qusima.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | qusima.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
13 | nsgsubg 19189 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
14 | 12, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑁 ∈ (SubGrp‘𝐺)) |
16 | 9 | sselda 3995 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐵) |
17 | 7, 11, 15, 16 | quslsm 33413 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
18 | 17 | mpteq2dva 5248 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
19 | 10, 18 | eqtrd 2775 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
20 | 3, 19 | eqtr2id 2788 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
22 | 21 | rneqd 5952 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = ran (𝐹 ↾ 𝐻)) |
23 | mpteq1 5241 | . . . . 5 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) | |
24 | 23 | rneqd 5952 | . . . 4 ⊢ (ℎ = 𝐻 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
26 | df-ima 5702 | . . . 4 ⊢ (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻) | |
27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻)) |
28 | 22, 25, 27 | 3eqtr4d 2785 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 “ 𝐻)) |
29 | 7 | fvexi 6921 | . . . . 5 ⊢ 𝐵 ∈ V |
30 | 29 | mptex 7243 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V |
31 | 2, 30 | eqeltri 2835 | . . 3 ⊢ 𝐹 ∈ V |
32 | imaexg 7936 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 “ 𝐻) ∈ V) | |
33 | 31, 32 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐻) ∈ V) |
34 | 1, 28, 5, 33 | fvmptd2 7024 | 1 ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 “ cima 5692 ‘cfv 6563 (class class class)co 7431 [cec 8742 Basecbs 17245 /s cqus 17552 SubGrpcsubg 19151 NrmSGrpcnsg 19152 ~QG cqg 19153 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-ec 8746 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-subg 19154 df-nsg 19155 df-eqg 19156 df-oppg 19377 df-lsm 19669 |
This theorem is referenced by: qusrn 33417 nsgmgc 33420 |
Copyright terms: Public domain | W3C validator |