| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusima | Structured version Visualization version GIF version | ||
| Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| qusima.b | ⊢ 𝐵 = (Base‘𝐺) |
| qusima.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| qusima.p | ⊢ ⊕ = (LSSum‘𝐺) |
| qusima.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
| qusima.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| qusima.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| qusima.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| qusima.s | ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusima | ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusima.e | . 2 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
| 2 | qusima.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 3 | 2 | reseq1i 5930 | . . . . . 6 ⊢ (𝐹 ↾ 𝐻) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) |
| 4 | qusima.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) | |
| 5 | qusima.h | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3938 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| 7 | qusima.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 7 | subgss 19024 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝐵) |
| 9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ⊆ 𝐵) |
| 10 | 9 | resmptd 5995 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁))) |
| 11 | qusima.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝐺) | |
| 12 | qusima.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 13 | nsgsubg 19055 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 14 | 12, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 16 | 9 | sselda 3937 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐵) |
| 17 | 7, 11, 15, 16 | quslsm 33352 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 18 | 17 | mpteq2dva 5188 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 19 | 10, 18 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 20 | 3, 19 | eqtr2id 2777 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
| 22 | 21 | rneqd 5884 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = ran (𝐹 ↾ 𝐻)) |
| 23 | mpteq1 5184 | . . . . 5 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) | |
| 24 | 23 | rneqd 5884 | . . . 4 ⊢ (ℎ = 𝐻 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 26 | df-ima 5636 | . . . 4 ⊢ (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻) | |
| 27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻)) |
| 28 | 22, 25, 27 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 “ 𝐻)) |
| 29 | 7 | fvexi 6840 | . . . . 5 ⊢ 𝐵 ∈ V |
| 30 | 29 | mptex 7163 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V |
| 31 | 2, 30 | eqeltri 2824 | . . 3 ⊢ 𝐹 ∈ V |
| 32 | imaexg 7853 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 “ 𝐻) ∈ V) | |
| 33 | 31, 32 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐻) ∈ V) |
| 34 | 1, 28, 5, 33 | fvmptd2 6942 | 1 ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 ↦ cmpt 5176 ran crn 5624 ↾ cres 5625 “ cima 5626 ‘cfv 6486 (class class class)co 7353 [cec 8630 Basecbs 17138 /s cqus 17427 SubGrpcsubg 19017 NrmSGrpcnsg 19018 ~QG cqg 19019 LSSumclsm 19531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-ec 8634 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-nsg 19021 df-eqg 19022 df-oppg 19243 df-lsm 19533 |
| This theorem is referenced by: qusrn 33356 nsgmgc 33359 |
| Copyright terms: Public domain | W3C validator |