| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusima | Structured version Visualization version GIF version | ||
| Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| qusima.b | ⊢ 𝐵 = (Base‘𝐺) |
| qusima.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| qusima.p | ⊢ ⊕ = (LSSum‘𝐺) |
| qusima.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
| qusima.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
| qusima.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| qusima.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| qusima.s | ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| qusima | ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusima.e | . 2 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
| 2 | qusima.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
| 3 | 2 | reseq1i 5993 | . . . . . 6 ⊢ (𝐹 ↾ 𝐻) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) |
| 4 | qusima.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) | |
| 5 | qusima.h | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3984 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| 7 | qusima.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 7 | subgss 19145 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝐵) |
| 9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ⊆ 𝐵) |
| 10 | 9 | resmptd 6058 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁))) |
| 11 | qusima.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝐺) | |
| 12 | qusima.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 13 | nsgsubg 19176 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
| 14 | 12, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 16 | 9 | sselda 3983 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐵) |
| 17 | 7, 11, 15, 16 | quslsm 33433 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 18 | 17 | mpteq2dva 5242 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 19 | 10, 18 | eqtrd 2777 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 20 | 3, 19 | eqtr2id 2790 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
| 22 | 21 | rneqd 5949 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = ran (𝐹 ↾ 𝐻)) |
| 23 | mpteq1 5235 | . . . . 5 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) | |
| 24 | 23 | rneqd 5949 | . . . 4 ⊢ (ℎ = 𝐻 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
| 26 | df-ima 5698 | . . . 4 ⊢ (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻) | |
| 27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻)) |
| 28 | 22, 25, 27 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 “ 𝐻)) |
| 29 | 7 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
| 30 | 29 | mptex 7243 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V |
| 31 | 2, 30 | eqeltri 2837 | . . 3 ⊢ 𝐹 ∈ V |
| 32 | imaexg 7935 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 “ 𝐻) ∈ V) | |
| 33 | 31, 32 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐻) ∈ V) |
| 34 | 1, 28, 5, 33 | fvmptd2 7024 | 1 ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 {csn 4626 ↦ cmpt 5225 ran crn 5686 ↾ cres 5687 “ cima 5688 ‘cfv 6561 (class class class)co 7431 [cec 8743 Basecbs 17247 /s cqus 17550 SubGrpcsubg 19138 NrmSGrpcnsg 19139 ~QG cqg 19140 LSSumclsm 19652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-ec 8747 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-nsg 19142 df-eqg 19143 df-oppg 19364 df-lsm 19654 |
| This theorem is referenced by: qusrn 33437 nsgmgc 33440 |
| Copyright terms: Public domain | W3C validator |