Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusima Structured version   Visualization version   GIF version

Theorem qusima 33386
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
qusima.b 𝐵 = (Base‘𝐺)
qusima.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
qusima.p = (LSSum‘𝐺)
qusima.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
qusima.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusima.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
qusima.h (𝜑𝐻𝑆)
qusima.s (𝜑𝑆 ⊆ (SubGrp‘𝐺))
Assertion
Ref Expression
qusima (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Distinct variable groups:   𝑥,𝐵   ,𝐹   ,𝐻,𝑥   𝑆,   𝜑,,𝑥
Allowed substitution hints:   𝐵()   (𝑥,)   𝑄(𝑥,)   𝑆(𝑥)   𝐸(𝑥,)   𝐹(𝑥)   𝐺(𝑥,)   𝑁(𝑥,)

Proof of Theorem qusima
StepHypRef Expression
1 qusima.e . 2 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
2 qusima.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
32reseq1i 5949 . . . . . 6 (𝐹𝐻) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻)
4 qusima.s . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
5 qusima.h . . . . . . . . . 10 (𝜑𝐻𝑆)
64, 5sseldd 3950 . . . . . . . . 9 (𝜑𝐻 ∈ (SubGrp‘𝐺))
7 qusima.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
87subgss 19066 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝐵)
96, 8syl 17 . . . . . . . 8 (𝜑𝐻𝐵)
109resmptd 6014 . . . . . . 7 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)))
11 qusima.p . . . . . . . . 9 = (LSSum‘𝐺)
12 qusima.n . . . . . . . . . . 11 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
13 nsgsubg 19097 . . . . . . . . . . 11 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1514adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑁 ∈ (SubGrp‘𝐺))
169sselda 3949 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑥𝐵)
177, 11, 15, 16quslsm 33383 . . . . . . . 8 ((𝜑𝑥𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
1817mpteq2dva 5203 . . . . . . 7 (𝜑 → (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
1910, 18eqtrd 2765 . . . . . 6 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
203, 19eqtr2id 2778 . . . . 5 (𝜑 → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2120adantr 480 . . . 4 ((𝜑 = 𝐻) → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2221rneqd 5905 . . 3 ((𝜑 = 𝐻) → ran (𝑥𝐻 ↦ ({𝑥} 𝑁)) = ran (𝐹𝐻))
23 mpteq1 5199 . . . . 5 ( = 𝐻 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2423rneqd 5905 . . . 4 ( = 𝐻 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2524adantl 481 . . 3 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
26 df-ima 5654 . . . 4 (𝐹𝐻) = ran (𝐹𝐻)
2726a1i 11 . . 3 ((𝜑 = 𝐻) → (𝐹𝐻) = ran (𝐹𝐻))
2822, 25, 273eqtr4d 2775 . 2 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
297fvexi 6875 . . . . 5 𝐵 ∈ V
3029mptex 7200 . . . 4 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V
312, 30eqeltri 2825 . . 3 𝐹 ∈ V
32 imaexg 7892 . . 3 (𝐹 ∈ V → (𝐹𝐻) ∈ V)
3331, 32mp1i 13 . 2 (𝜑 → (𝐹𝐻) ∈ V)
341, 28, 5, 33fvmptd2 6979 1 (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592  cmpt 5191  ran crn 5642  cres 5643  cima 5644  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186   /s cqus 17475  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  LSSumclsm 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-ec 8676  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-nsg 19063  df-eqg 19064  df-oppg 19285  df-lsm 19573
This theorem is referenced by:  qusrn  33387  nsgmgc  33390
  Copyright terms: Public domain W3C validator