Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusima Structured version   Visualization version   GIF version

Theorem qusima 31115
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
qusima.b 𝐵 = (Base‘𝐺)
qusima.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
qusima.p = (LSSum‘𝐺)
qusima.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
qusima.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
qusima.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
qusima.h (𝜑𝐻𝑆)
qusima.s (𝜑𝑆 ⊆ (SubGrp‘𝐺))
Assertion
Ref Expression
qusima (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Distinct variable groups:   𝑥,𝐵   ,𝐹   ,𝐻,𝑥   𝑆,   𝜑,,𝑥
Allowed substitution hints:   𝐵()   (𝑥,)   𝑄(𝑥,)   𝑆(𝑥)   𝐸(𝑥,)   𝐹(𝑥)   𝐺(𝑥,)   𝑁(𝑥,)

Proof of Theorem qusima
StepHypRef Expression
1 qusima.e . 2 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
2 qusima.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
32reseq1i 5819 . . . . . 6 (𝐹𝐻) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻)
4 qusima.s . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
5 qusima.h . . . . . . . . . 10 (𝜑𝐻𝑆)
64, 5sseldd 3893 . . . . . . . . 9 (𝜑𝐻 ∈ (SubGrp‘𝐺))
7 qusima.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
87subgss 18347 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝐵)
96, 8syl 17 . . . . . . . 8 (𝜑𝐻𝐵)
109resmptd 5880 . . . . . . 7 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)))
11 qusima.p . . . . . . . . 9 = (LSSum‘𝐺)
12 qusima.n . . . . . . . . . . 11 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
13 nsgsubg 18377 . . . . . . . . . . 11 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (SubGrp‘𝐺))
1514adantr 484 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑁 ∈ (SubGrp‘𝐺))
169sselda 3892 . . . . . . . . 9 ((𝜑𝑥𝐻) → 𝑥𝐵)
177, 11, 15, 16quslsm 31114 . . . . . . . 8 ((𝜑𝑥𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
1817mpteq2dva 5127 . . . . . . 7 (𝜑 → (𝑥𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
1910, 18eqtrd 2793 . . . . . 6 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
203, 19syl5req 2806 . . . . 5 (𝜑 → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2120adantr 484 . . . 4 ((𝜑 = 𝐻) → (𝑥𝐻 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
2221rneqd 5779 . . 3 ((𝜑 = 𝐻) → ran (𝑥𝐻 ↦ ({𝑥} 𝑁)) = ran (𝐹𝐻))
23 mpteq1 5120 . . . . 5 ( = 𝐻 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2423rneqd 5779 . . . 4 ( = 𝐻 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
2524adantl 485 . . 3 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝐻 ↦ ({𝑥} 𝑁)))
26 df-ima 5537 . . . 4 (𝐹𝐻) = ran (𝐹𝐻)
2726a1i 11 . . 3 ((𝜑 = 𝐻) → (𝐹𝐻) = ran (𝐹𝐻))
2822, 25, 273eqtr4d 2803 . 2 ((𝜑 = 𝐻) → ran (𝑥 ↦ ({𝑥} 𝑁)) = (𝐹𝐻))
297fvexi 6672 . . . . 5 𝐵 ∈ V
3029mptex 6977 . . . 4 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V
312, 30eqeltri 2848 . . 3 𝐹 ∈ V
32 imaexg 7625 . . 3 (𝐹 ∈ V → (𝐹𝐻) ∈ V)
3331, 32mp1i 13 . 2 (𝜑 → (𝐹𝐻) ∈ V)
341, 28, 5, 33fvmptd2 6767 1 (𝜑 → (𝐸𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  wss 3858  {csn 4522  cmpt 5112  ran crn 5525  cres 5526  cima 5527  cfv 6335  (class class class)co 7150  [cec 8297  Basecbs 16541   /s cqus 16836  SubGrpcsubg 18340  NrmSGrpcnsg 18341   ~QG cqg 18342  LSSumclsm 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-ec 8301  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-subg 18343  df-nsg 18344  df-eqg 18345  df-oppg 18541  df-lsm 18828
This theorem is referenced by:  nsgmgc  31118
  Copyright terms: Public domain W3C validator