![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusima | Structured version Visualization version GIF version |
Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
Ref | Expression |
---|---|
qusima.b | ⊢ 𝐵 = (Base‘𝐺) |
qusima.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
qusima.p | ⊢ ⊕ = (LSSum‘𝐺) |
qusima.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
qusima.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
qusima.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
qusima.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
qusima.s | ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
qusima | ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusima.e | . 2 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
2 | qusima.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | |
3 | 2 | reseq1i 6005 | . . . . . 6 ⊢ (𝐹 ↾ 𝐻) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) |
4 | qusima.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) | |
5 | qusima.h | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
6 | 4, 5 | sseldd 4009 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
7 | qusima.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 7 | subgss 19167 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝐵) |
9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ⊆ 𝐵) |
10 | 9 | resmptd 6069 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁))) |
11 | qusima.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | qusima.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
13 | nsgsubg 19198 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
14 | 12, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑁 ∈ (SubGrp‘𝐺)) |
16 | 9 | sselda 4008 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐵) |
17 | 7, 11, 15, 16 | quslsm 33398 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐻) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
18 | 17 | mpteq2dva 5266 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
19 | 10, 18 | eqtrd 2780 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ↾ 𝐻) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
20 | 3, 19 | eqtr2id 2793 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 ↾ 𝐻)) |
22 | 21 | rneqd 5963 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁)) = ran (𝐹 ↾ 𝐻)) |
23 | mpteq1 5259 | . . . . 5 ⊢ (ℎ = 𝐻 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) | |
24 | 23 | rneqd 5963 | . . . 4 ⊢ (ℎ = 𝐻 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝐻 ↦ ({𝑥} ⊕ 𝑁))) |
26 | df-ima 5713 | . . . 4 ⊢ (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻) | |
27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ℎ = 𝐻) → (𝐹 “ 𝐻) = ran (𝐹 ↾ 𝐻)) |
28 | 22, 25, 27 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ ℎ = 𝐻) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝐹 “ 𝐻)) |
29 | 7 | fvexi 6934 | . . . . 5 ⊢ 𝐵 ∈ V |
30 | 29 | mptex 7260 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ V |
31 | 2, 30 | eqeltri 2840 | . . 3 ⊢ 𝐹 ∈ V |
32 | imaexg 7953 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 “ 𝐻) ∈ V) | |
33 | 31, 32 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐻) ∈ V) |
34 | 1, 28, 5, 33 | fvmptd2 7037 | 1 ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 “ cima 5703 ‘cfv 6573 (class class class)co 7448 [cec 8761 Basecbs 17258 /s cqus 17565 SubGrpcsubg 19160 NrmSGrpcnsg 19161 ~QG cqg 19162 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-ec 8765 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-nsg 19164 df-eqg 19165 df-oppg 19386 df-lsm 19678 |
This theorem is referenced by: qusrn 33402 nsgmgc 33405 |
Copyright terms: Public domain | W3C validator |