![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylow3 | Structured version Visualization version GIF version |
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3.n | ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) |
Ref | Expression |
---|---|
sylow3 | ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
4 | sylow3.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | slwn0 18491 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
6 | 1, 2, 3, 5 | syl3anc 1351 | . . 3 ⊢ (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅) |
7 | n0 4191 | . . 3 ⊢ ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
8 | 6, 7 | sylib 210 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) |
9 | sylow3.n | . . . 4 ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) | |
10 | 1 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
11 | 2 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
12 | 3 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ) |
13 | eqid 2772 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2772 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | oveq2 6978 | . . . . . . . . . 10 ⊢ (𝑐 = 𝑧 → (𝑎(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)𝑧)) | |
16 | 15 | oveq1d 6985 | . . . . . . . . 9 ⊢ (𝑐 = 𝑧 → ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎) = ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
17 | 16 | cbvmptv 5022 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
18 | oveq1 6977 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → (𝑎(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) | |
19 | id 22 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
20 | 18, 19 | oveq12d 6988 | . . . . . . . . 9 ⊢ (𝑎 = 𝑥 → ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎) = ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) |
21 | 20 | mpteq2dv 5017 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
22 | 17, 21 | syl5eq 2820 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
23 | 22 | rneqd 5644 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
24 | mpteq1 5009 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) | |
25 | 24 | rneqd 5644 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
26 | 23, 25 | cbvmpov 7059 | . . . . 5 ⊢ (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
27 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
28 | eqid 2772 | . . . . 5 ⊢ {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} = {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} | |
29 | eqid 2772 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} | |
30 | 4, 10, 11, 12, 13, 14, 26, 27, 28, 29 | sylow3lem4 18506 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
31 | 9, 30 | syl5eqbr 4958 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
32 | 9 | oveq1i 6980 | . . . 4 ⊢ (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) |
33 | 23, 25 | cbvmpov 7059 | . . . . 5 ⊢ (𝑎 ∈ 𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
34 | eqid 2772 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} | |
35 | 4, 10, 11, 12, 13, 14, 27, 33, 34 | sylow3lem6 18508 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) |
36 | 32, 35 | syl5eq 2820 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1) |
37 | 31, 36 | jca 504 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
38 | 8, 37 | exlimddv 1894 | 1 ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 {crab 3086 ∅c0 4173 class class class wbr 4923 ↦ cmpt 5002 ran crn 5401 ‘cfv 6182 (class class class)co 6970 ∈ cmpo 6972 Fincfn 8298 1c1 10328 / cdiv 11090 mod cmo 13045 ↑cexp 13237 ♯chash 13498 ∥ cdvds 15457 ℙcprime 15861 pCnt cpc 16019 Basecbs 16329 +gcplusg 16411 Grpcgrp 17881 -gcsg 17883 pSyl cslw 18407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-disj 4892 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-omul 7902 df-er 8081 df-ec 8083 df-qs 8087 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-oi 8761 df-dju 9116 df-card 9154 df-acn 9157 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-xnn0 11773 df-z 11787 df-uz 12052 df-q 12156 df-rp 12198 df-fz 12702 df-fzo 12843 df-fl 12970 df-mod 13046 df-seq 13178 df-exp 13238 df-fac 13442 df-bc 13471 df-hash 13499 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 df-sum 14894 df-dvds 15458 df-gcd 15694 df-prm 15862 df-pc 16020 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-submnd 17794 df-grp 17884 df-minusg 17885 df-sbg 17886 df-mulg 18002 df-subg 18050 df-nsg 18051 df-eqg 18052 df-ghm 18117 df-ga 18181 df-od 18408 df-pgp 18410 df-slw 18411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |