MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Visualization version   GIF version

Theorem sylow3 19238
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3.n 𝑁 = (♯‘(𝑃 pSyl 𝐺))
Assertion
Ref Expression
sylow3 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))

Proof of Theorem sylow3
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑥 𝑦 𝑧 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
2 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
3 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
4 sylow3.x . . . . 5 𝑋 = (Base‘𝐺)
54slwn0 19220 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
61, 2, 3, 5syl3anc 1370 . . 3 (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅)
7 n0 4280 . . 3 ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
86, 7sylib 217 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
9 sylow3.n . . . 4 𝑁 = (♯‘(𝑃 pSyl 𝐺))
101adantr 481 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
112adantr 481 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
123adantr 481 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ)
13 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
14 eqid 2738 . . . . 5 (-g𝐺) = (-g𝐺)
15 oveq2 7283 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑎(+g𝐺)𝑐) = (𝑎(+g𝐺)𝑧))
1615oveq1d 7290 . . . . . . . . 9 (𝑐 = 𝑧 → ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎) = ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
1716cbvmptv 5187 . . . . . . . 8 (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
18 oveq1 7282 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
19 id 22 . . . . . . . . . 10 (𝑎 = 𝑥𝑎 = 𝑥)
2018, 19oveq12d 7293 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎) = ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥))
2120mpteq2dv 5176 . . . . . . . 8 (𝑎 = 𝑥 → (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2217, 21eqtrid 2790 . . . . . . 7 (𝑎 = 𝑥 → (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2322rneqd 5847 . . . . . 6 (𝑎 = 𝑥 → ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
24 mpteq1 5167 . . . . . . 7 (𝑏 = 𝑦 → (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2524rneqd 5847 . . . . . 6 (𝑏 = 𝑦 → ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2623, 25cbvmpov 7370 . . . . 5 (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
27 simpr 485 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺))
28 eqid 2738 . . . . 5 {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘} = {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘}
29 eqid 2738 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)}
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 19235 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
319, 30eqbrtrid 5109 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
329oveq1i 7285 . . . 4 (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃)
3323, 25cbvmpov 7370 . . . . 5 (𝑎𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
34 eqid 2738 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)}
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 19237 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
3632, 35eqtrid 2790 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1)
3731, 36jca 512 . 2 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
388, 37exlimddv 1938 1 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  {crab 3068  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  1c1 10872   / cdiv 11632   mod cmo 13589  cexp 13782  chash 14044  cdvds 15963  cprime 16376   pCnt cpc 16537  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  -gcsg 18579   pSyl cslw 19135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-ga 18896  df-od 19136  df-pgp 19138  df-slw 19139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator