| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow3 | Structured version Visualization version GIF version | ||
| Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| sylow3.n | ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) |
| Ref | Expression |
|---|---|
| sylow3 | ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 4 | sylow3.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | 4 | slwn0 19522 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅) |
| 7 | n0 4298 | . . 3 ⊢ ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) |
| 9 | sylow3.n | . . . 4 ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) | |
| 10 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
| 11 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
| 12 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ) |
| 13 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | eqid 2731 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | oveq2 7349 | . . . . . . . . . 10 ⊢ (𝑐 = 𝑧 → (𝑎(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)𝑧)) | |
| 16 | 15 | oveq1d 7356 | . . . . . . . . 9 ⊢ (𝑐 = 𝑧 → ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎) = ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
| 17 | 16 | cbvmptv 5190 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
| 18 | oveq1 7348 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → (𝑎(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) | |
| 19 | id 22 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
| 20 | 18, 19 | oveq12d 7359 | . . . . . . . . 9 ⊢ (𝑎 = 𝑥 → ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎) = ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) |
| 21 | 20 | mpteq2dv 5180 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 22 | 17, 21 | eqtrid 2778 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 23 | 22 | rneqd 5873 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 24 | mpteq1 5175 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) | |
| 25 | 24 | rneqd 5873 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 26 | 23, 25 | cbvmpov 7436 | . . . . 5 ⊢ (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 27 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
| 28 | eqid 2731 | . . . . 5 ⊢ {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} = {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} | |
| 29 | eqid 2731 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} | |
| 30 | 4, 10, 11, 12, 13, 14, 26, 27, 28, 29 | sylow3lem4 19537 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
| 31 | 9, 30 | eqbrtrid 5121 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
| 32 | 9 | oveq1i 7351 | . . . 4 ⊢ (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) |
| 33 | 23, 25 | cbvmpov 7436 | . . . . 5 ⊢ (𝑎 ∈ 𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
| 34 | eqid 2731 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} | |
| 35 | 4, 10, 11, 12, 13, 14, 27, 33, 34 | sylow3lem6 19539 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) |
| 36 | 32, 35 | eqtrid 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1) |
| 37 | 31, 36 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
| 38 | 8, 37 | exlimddv 1936 | 1 ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 ∅c0 4278 class class class wbr 5086 ↦ cmpt 5167 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Fincfn 8864 1c1 11002 / cdiv 11769 mod cmo 13768 ↑cexp 13963 ♯chash 14232 ∥ cdvds 16158 ℙcprime 16577 pCnt cpc 16743 Basecbs 17115 +gcplusg 17156 Grpcgrp 18841 -gcsg 18843 pSyl cslw 19434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-dvds 16159 df-gcd 16401 df-prm 16578 df-pc 16744 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19120 df-ga 19197 df-od 19435 df-pgp 19437 df-slw 19438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |