MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Visualization version   GIF version

Theorem sylow3 18757
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3.n 𝑁 = (♯‘(𝑃 pSyl 𝐺))
Assertion
Ref Expression
sylow3 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))

Proof of Theorem sylow3
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑥 𝑦 𝑧 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
2 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
3 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
4 sylow3.x . . . . 5 𝑋 = (Base‘𝐺)
54slwn0 18739 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
61, 2, 3, 5syl3anc 1367 . . 3 (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅)
7 n0 4309 . . 3 ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
86, 7sylib 220 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
9 sylow3.n . . . 4 𝑁 = (♯‘(𝑃 pSyl 𝐺))
101adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
112adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
123adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ)
13 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
14 eqid 2821 . . . . 5 (-g𝐺) = (-g𝐺)
15 oveq2 7163 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑎(+g𝐺)𝑐) = (𝑎(+g𝐺)𝑧))
1615oveq1d 7170 . . . . . . . . 9 (𝑐 = 𝑧 → ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎) = ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
1716cbvmptv 5168 . . . . . . . 8 (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
18 oveq1 7162 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
19 id 22 . . . . . . . . . 10 (𝑎 = 𝑥𝑎 = 𝑥)
2018, 19oveq12d 7173 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎) = ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥))
2120mpteq2dv 5161 . . . . . . . 8 (𝑎 = 𝑥 → (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2217, 21syl5eq 2868 . . . . . . 7 (𝑎 = 𝑥 → (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2322rneqd 5807 . . . . . 6 (𝑎 = 𝑥 → ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
24 mpteq1 5153 . . . . . . 7 (𝑏 = 𝑦 → (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2524rneqd 5807 . . . . . 6 (𝑏 = 𝑦 → ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2623, 25cbvmpov 7248 . . . . 5 (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
27 simpr 487 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺))
28 eqid 2821 . . . . 5 {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘} = {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘}
29 eqid 2821 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)}
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 18754 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
319, 30eqbrtrid 5100 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
329oveq1i 7165 . . . 4 (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃)
3323, 25cbvmpov 7248 . . . . 5 (𝑎𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
34 eqid 2821 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)}
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 18756 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
3632, 35syl5eq 2868 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1)
3731, 36jca 514 . 2 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
388, 37exlimddv 1932 1 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  {crab 3142  c0 4290   class class class wbr 5065  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  cmpo 7157  Fincfn 8508  1c1 10537   / cdiv 11296   mod cmo 13236  cexp 13428  chash 13689  cdvds 15606  cprime 16014   pCnt cpc 16172  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102  -gcsg 18104   pSyl cslw 18654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-dvds 15607  df-gcd 15843  df-prm 16015  df-pc 16173  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-ga 18419  df-od 18655  df-pgp 18657  df-slw 18658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator