MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Visualization version   GIF version

Theorem sylow3 19666
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3.n 𝑁 = (♯‘(𝑃 pSyl 𝐺))
Assertion
Ref Expression
sylow3 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))

Proof of Theorem sylow3
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑥 𝑦 𝑧 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
2 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
3 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
4 sylow3.x . . . . 5 𝑋 = (Base‘𝐺)
54slwn0 19648 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
61, 2, 3, 5syl3anc 1370 . . 3 (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅)
7 n0 4359 . . 3 ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
86, 7sylib 218 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
9 sylow3.n . . . 4 𝑁 = (♯‘(𝑃 pSyl 𝐺))
101adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
112adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
123adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ)
13 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
14 eqid 2735 . . . . 5 (-g𝐺) = (-g𝐺)
15 oveq2 7439 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑎(+g𝐺)𝑐) = (𝑎(+g𝐺)𝑧))
1615oveq1d 7446 . . . . . . . . 9 (𝑐 = 𝑧 → ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎) = ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
1716cbvmptv 5261 . . . . . . . 8 (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
18 oveq1 7438 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
19 id 22 . . . . . . . . . 10 (𝑎 = 𝑥𝑎 = 𝑥)
2018, 19oveq12d 7449 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎) = ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥))
2120mpteq2dv 5250 . . . . . . . 8 (𝑎 = 𝑥 → (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2217, 21eqtrid 2787 . . . . . . 7 (𝑎 = 𝑥 → (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2322rneqd 5952 . . . . . 6 (𝑎 = 𝑥 → ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
24 mpteq1 5241 . . . . . . 7 (𝑏 = 𝑦 → (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2524rneqd 5952 . . . . . 6 (𝑏 = 𝑦 → ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2623, 25cbvmpov 7528 . . . . 5 (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
27 simpr 484 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺))
28 eqid 2735 . . . . 5 {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘} = {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘}
29 eqid 2735 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)}
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 19663 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
319, 30eqbrtrid 5183 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
329oveq1i 7441 . . . 4 (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃)
3323, 25cbvmpov 7528 . . . . 5 (𝑎𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
34 eqid 2735 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)}
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 19665 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
3632, 35eqtrid 2787 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1)
3731, 36jca 511 . 2 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
388, 37exlimddv 1933 1 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  {crab 3433  c0 4339   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  1c1 11154   / cdiv 11918   mod cmo 13906  cexp 14099  chash 14366  cdvds 16287  cprime 16705   pCnt cpc 16870  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964  -gcsg 18966   pSyl cslw 19560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-ga 19321  df-od 19561  df-pgp 19563  df-slw 19564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator