Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylow3 | Structured version Visualization version GIF version |
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3.n | ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) |
Ref | Expression |
---|---|
sylow3 | ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
4 | sylow3.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | slwn0 19220 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
6 | 1, 2, 3, 5 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅) |
7 | n0 4280 | . . 3 ⊢ ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) |
9 | sylow3.n | . . . 4 ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) | |
10 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
11 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
12 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ) |
13 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2738 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | oveq2 7283 | . . . . . . . . . 10 ⊢ (𝑐 = 𝑧 → (𝑎(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)𝑧)) | |
16 | 15 | oveq1d 7290 | . . . . . . . . 9 ⊢ (𝑐 = 𝑧 → ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎) = ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
17 | 16 | cbvmptv 5187 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
18 | oveq1 7282 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → (𝑎(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) | |
19 | id 22 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
20 | 18, 19 | oveq12d 7293 | . . . . . . . . 9 ⊢ (𝑎 = 𝑥 → ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎) = ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) |
21 | 20 | mpteq2dv 5176 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
22 | 17, 21 | eqtrid 2790 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
23 | 22 | rneqd 5847 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
24 | mpteq1 5167 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) | |
25 | 24 | rneqd 5847 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
26 | 23, 25 | cbvmpov 7370 | . . . . 5 ⊢ (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
27 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
28 | eqid 2738 | . . . . 5 ⊢ {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} = {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} | |
29 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} | |
30 | 4, 10, 11, 12, 13, 14, 26, 27, 28, 29 | sylow3lem4 19235 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
31 | 9, 30 | eqbrtrid 5109 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
32 | 9 | oveq1i 7285 | . . . 4 ⊢ (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) |
33 | 23, 25 | cbvmpov 7370 | . . . . 5 ⊢ (𝑎 ∈ 𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
34 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} | |
35 | 4, 10, 11, 12, 13, 14, 27, 33, 34 | sylow3lem6 19237 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) |
36 | 32, 35 | eqtrid 2790 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1) |
37 | 31, 36 | jca 512 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
38 | 8, 37 | exlimddv 1938 | 1 ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Fincfn 8733 1c1 10872 / cdiv 11632 mod cmo 13589 ↑cexp 13782 ♯chash 14044 ∥ cdvds 15963 ℙcprime 16376 pCnt cpc 16537 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 -gcsg 18579 pSyl cslw 19135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-ga 18896 df-od 19136 df-pgp 19138 df-slw 19139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |