Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylow3 | Structured version Visualization version GIF version |
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3.n | ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) |
Ref | Expression |
---|---|
sylow3 | ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
4 | sylow3.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | slwn0 19316 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
6 | 1, 2, 3, 5 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅) |
7 | n0 4293 | . . 3 ⊢ ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) |
9 | sylow3.n | . . . 4 ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) | |
10 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
11 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
12 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ) |
13 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2736 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | oveq2 7345 | . . . . . . . . . 10 ⊢ (𝑐 = 𝑧 → (𝑎(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)𝑧)) | |
16 | 15 | oveq1d 7352 | . . . . . . . . 9 ⊢ (𝑐 = 𝑧 → ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎) = ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
17 | 16 | cbvmptv 5205 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
18 | oveq1 7344 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → (𝑎(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) | |
19 | id 22 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
20 | 18, 19 | oveq12d 7355 | . . . . . . . . 9 ⊢ (𝑎 = 𝑥 → ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎) = ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) |
21 | 20 | mpteq2dv 5194 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
22 | 17, 21 | eqtrid 2788 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
23 | 22 | rneqd 5879 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
24 | mpteq1 5185 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) | |
25 | 24 | rneqd 5879 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
26 | 23, 25 | cbvmpov 7432 | . . . . 5 ⊢ (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
27 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
28 | eqid 2736 | . . . . 5 ⊢ {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} = {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} | |
29 | eqid 2736 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} | |
30 | 4, 10, 11, 12, 13, 14, 26, 27, 28, 29 | sylow3lem4 19331 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
31 | 9, 30 | eqbrtrid 5127 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
32 | 9 | oveq1i 7347 | . . . 4 ⊢ (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) |
33 | 23, 25 | cbvmpov 7432 | . . . . 5 ⊢ (𝑎 ∈ 𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
34 | eqid 2736 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} | |
35 | 4, 10, 11, 12, 13, 14, 27, 33, 34 | sylow3lem6 19333 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) |
36 | 32, 35 | eqtrid 2788 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1) |
37 | 31, 36 | jca 512 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
38 | 8, 37 | exlimddv 1937 | 1 ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 {crab 3403 ∅c0 4269 class class class wbr 5092 ↦ cmpt 5175 ran crn 5621 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 Fincfn 8804 1c1 10973 / cdiv 11733 mod cmo 13690 ↑cexp 13883 ♯chash 14145 ∥ cdvds 16062 ℙcprime 16473 pCnt cpc 16634 Basecbs 17009 +gcplusg 17059 Grpcgrp 18673 -gcsg 18675 pSyl cslw 19231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-disj 5058 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-omul 8372 df-er 8569 df-ec 8571 df-qs 8575 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-dju 9758 df-card 9796 df-acn 9799 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-q 12790 df-rp 12832 df-fz 13341 df-fzo 13484 df-fl 13613 df-mod 13691 df-seq 13823 df-exp 13884 df-fac 14089 df-bc 14118 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-dvds 16063 df-gcd 16301 df-prm 16474 df-pc 16635 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mulg 18797 df-subg 18848 df-nsg 18849 df-eqg 18850 df-ghm 18928 df-ga 18992 df-od 19232 df-pgp 19234 df-slw 19235 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |