Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylow3 | Structured version Visualization version GIF version |
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of ∣ 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
sylow3.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow3.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
sylow3.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow3.p | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
sylow3.n | ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) |
Ref | Expression |
---|---|
sylow3 | ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | sylow3.xf | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | sylow3.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
4 | sylow3.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
5 | 4 | slwn0 19135 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅) |
6 | 1, 2, 3, 5 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅) |
7 | n0 4277 | . . 3 ⊢ ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺)) |
9 | sylow3.n | . . . 4 ⊢ 𝑁 = (♯‘(𝑃 pSyl 𝐺)) | |
10 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp) |
11 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
12 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ) |
13 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2738 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | oveq2 7263 | . . . . . . . . . 10 ⊢ (𝑐 = 𝑧 → (𝑎(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)𝑧)) | |
16 | 15 | oveq1d 7270 | . . . . . . . . 9 ⊢ (𝑐 = 𝑧 → ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎) = ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
17 | 16 | cbvmptv 5183 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) |
18 | oveq1 7262 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → (𝑎(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)𝑧)) | |
19 | id 22 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
20 | 18, 19 | oveq12d 7273 | . . . . . . . . 9 ⊢ (𝑎 = 𝑥 → ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎) = ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) |
21 | 20 | mpteq2dv 5172 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑧 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑧)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
22 | 17, 21 | eqtrid 2790 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
23 | 22 | rneqd 5836 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)) = ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
24 | mpteq1 5163 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) | |
25 | 24 | rneqd 5836 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ran (𝑧 ∈ 𝑏 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥)) = ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
26 | 23, 25 | cbvmpov 7348 | . . . . 5 ⊢ (𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
27 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺)) | |
28 | eqid 2738 | . . . . 5 ⊢ {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} = {𝑢 ∈ 𝑋 ∣ (𝑢(𝑎 ∈ 𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎)))𝑘) = 𝑘} | |
29 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑘)} | |
30 | 4, 10, 11, 12, 13, 14, 26, 27, 28, 29 | sylow3lem4 19150 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
31 | 9, 30 | eqbrtrid 5105 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
32 | 9 | oveq1i 7265 | . . . 4 ⊢ (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) |
33 | 23, 25 | cbvmpov 7348 | . . . . 5 ⊢ (𝑎 ∈ 𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐 ∈ 𝑏 ↦ ((𝑎(+g‘𝐺)𝑐)(-g‘𝐺)𝑎))) = (𝑥 ∈ 𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥(+g‘𝐺)𝑧)(-g‘𝐺)𝑥))) |
34 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥(+g‘𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑠)} | |
35 | 4, 10, 11, 12, 13, 14, 27, 33, 34 | sylow3lem6 19152 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1) |
36 | 32, 35 | eqtrid 2790 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1) |
37 | 31, 36 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
38 | 8, 37 | exlimddv 1939 | 1 ⊢ (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∅c0 4253 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 1c1 10803 / cdiv 11562 mod cmo 13517 ↑cexp 13710 ♯chash 13972 ∥ cdvds 15891 ℙcprime 16304 pCnt cpc 16465 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 -gcsg 18494 pSyl cslw 19050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-ga 18811 df-od 19051 df-pgp 19053 df-slw 19054 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |