MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   GIF version

Theorem coe1fzgsumd 22219
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
coe1fzgsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝐵)
coe1fzgsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
coe1fzgsumd (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem coe1fzgsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝐵)
2 coe1fzgsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3289 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ ∅ 𝑀𝐵))
43anbi2d 630 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵)))
5 mpteq1 5178 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 7362 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6826 . . . . . . . 8 (𝑛 = ∅ → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6824 . . . . . . 7 (𝑛 = ∅ → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾))
9 mpteq1 5178 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))
109oveq2d 7362 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
118, 10eqeq12d 2747 . . . . . 6 (𝑛 = ∅ → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))))
124, 11imbi12d 344 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))))
13 raleq 3289 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑚 𝑀𝐵))
1413anbi2d 630 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝐵)))
15 mpteq1 5178 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6826 . . . . . . . 8 (𝑛 = 𝑚 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6824 . . . . . . 7 (𝑛 = 𝑚 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾))
19 mpteq1 5178 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
2019oveq2d 7362 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))
2118, 20eqeq12d 2747 . . . . . 6 (𝑛 = 𝑚 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))))
2214, 21imbi12d 344 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
23 raleq 3289 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵))
2423anbi2d 630 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵)))
25 mpteq1 5178 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 7362 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6826 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6824 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾))
29 mpteq1 5178 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))
3029oveq2d 7362 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
3128, 30eqeq12d 2747 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
3224, 31imbi12d 344 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
33 raleq 3289 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑁 𝑀𝐵))
3433anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝐵)))
35 mpteq1 5178 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6826 . . . . . . . 8 (𝑛 = 𝑁 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6824 . . . . . . 7 (𝑛 = 𝑁 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾))
39 mpteq1 5178 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))
4039oveq2d 7362 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
4138, 40eqeq12d 2747 . . . . . 6 (𝑛 = 𝑁 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
4234, 41imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
43 mpt0 6623 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 7357 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2731 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 18592 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2754 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6825 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃))
4948a1i 11 . . . . . . . . 9 (𝜑 → (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃)))
5049fveq1d 6824 . . . . . . . 8 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = ((coe1‘(0g𝑃))‘𝐾))
51 coe1fzgsumd.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 coe1fzgsumd.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
53 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5452, 45, 53coe1z 22177 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5551, 54syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5655fveq1d 6824 . . . . . . . 8 (𝜑 → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
57 fvex 6835 . . . . . . . . 9 (0g𝑅) ∈ V
58 coe1fzgsumd.k . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
59 fvconst2g 7136 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6057, 58, 59sylancr 587 . . . . . . . 8 (𝜑 → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6150, 56, 603eqtrd 2770 . . . . . . 7 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (0g𝑅))
62 mpt0 6623 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)) = ∅
6362oveq2i 7357 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg ∅)
6453gsum0 18592 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
6563, 64eqtri 2754 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (0g𝑅)
6661, 65eqtr4di 2784 . . . . . 6 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
68 coe1fzgsumd.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
6952, 68, 51, 58coe1fzgsumdlem 22218 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
70693expia 1121 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
7170a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
72 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
73 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7471, 72, 733imtr4g 296 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7512, 22, 32, 42, 67, 74findcard2s 9075 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
7675expd 415 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
772, 76mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
781, 77mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3895  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  Fincfn 8869  0cn0 12381  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Ringcrg 20151  Poly1cpl1 22089  coe1cco1 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrng 20461  df-subrg 20485  df-psr 21846  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-ply1 22094  df-coe1 22095
This theorem is referenced by:  gsummoncoe1  22223  cpmatmcllem  22633  decpmatmullem  22686  mp2pm2mplem4  22724
  Copyright terms: Public domain W3C validator