MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   GIF version

Theorem coe1fzgsumd 21011
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
coe1fzgsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝐵)
coe1fzgsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
coe1fzgsumd (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem coe1fzgsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝐵)
2 coe1fzgsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3321 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ ∅ 𝑀𝐵))
43anbi2d 632 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵)))
5 mpteq1 5113 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 7159 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6655 . . . . . . . 8 (𝑛 = ∅ → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6653 . . . . . . 7 (𝑛 = ∅ → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾))
9 mpteq1 5113 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))
109oveq2d 7159 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
118, 10eqeq12d 2775 . . . . . 6 (𝑛 = ∅ → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))))
124, 11imbi12d 349 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))))
13 raleq 3321 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑚 𝑀𝐵))
1413anbi2d 632 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝐵)))
15 mpteq1 5113 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 7159 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6655 . . . . . . . 8 (𝑛 = 𝑚 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6653 . . . . . . 7 (𝑛 = 𝑚 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾))
19 mpteq1 5113 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
2019oveq2d 7159 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))
2118, 20eqeq12d 2775 . . . . . 6 (𝑛 = 𝑚 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))))
2214, 21imbi12d 349 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
23 raleq 3321 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵))
2423anbi2d 632 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵)))
25 mpteq1 5113 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 7159 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6655 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6653 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾))
29 mpteq1 5113 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))
3029oveq2d 7159 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
3128, 30eqeq12d 2775 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
3224, 31imbi12d 349 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
33 raleq 3321 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑁 𝑀𝐵))
3433anbi2d 632 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝐵)))
35 mpteq1 5113 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 7159 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6655 . . . . . . . 8 (𝑛 = 𝑁 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6653 . . . . . . 7 (𝑛 = 𝑁 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾))
39 mpteq1 5113 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))
4039oveq2d 7159 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
4138, 40eqeq12d 2775 . . . . . 6 (𝑛 = 𝑁 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
4234, 41imbi12d 349 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
43 mpt0 6466 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 7154 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2759 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 17945 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2782 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6654 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃))
4948a1i 11 . . . . . . . . 9 (𝜑 → (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃)))
5049fveq1d 6653 . . . . . . . 8 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = ((coe1‘(0g𝑃))‘𝐾))
51 coe1fzgsumd.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 coe1fzgsumd.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
53 eqid 2759 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5452, 45, 53coe1z 20972 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5551, 54syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5655fveq1d 6653 . . . . . . . 8 (𝜑 → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
57 fvex 6664 . . . . . . . . 9 (0g𝑅) ∈ V
58 coe1fzgsumd.k . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
59 fvconst2g 6948 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6057, 58, 59sylancr 591 . . . . . . . 8 (𝜑 → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6150, 56, 603eqtrd 2798 . . . . . . 7 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (0g𝑅))
62 mpt0 6466 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)) = ∅
6362oveq2i 7154 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg ∅)
6453gsum0 17945 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
6563, 64eqtri 2782 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (0g𝑅)
6661, 65eqtr4di 2812 . . . . . 6 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
6766adantr 485 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
68 coe1fzgsumd.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
6952, 68, 51, 58coe1fzgsumdlem 21010 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
70693expia 1119 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
7170a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
72 impexp 455 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
73 impexp 455 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7471, 72, 733imtr4g 300 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7512, 22, 32, 42, 67, 74findcard2s 8777 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
7675expd 420 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
772, 76mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
781, 77mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3068  Vcvv 3407  cun 3852  c0 4221  {csn 4515  cmpt 5105   × cxp 5515  cfv 6328  (class class class)co 7143  Fincfn 8520  0cn0 11919  Basecbs 16526  0gc0g 16756   Σg cgsu 16757  Ringcrg 19350  Poly1cpl1 20886  coe1cco1 20887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-ofr 7399  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-fz 12925  df-fzo 13068  df-seq 13404  df-hash 13726  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-tset 16627  df-ple 16628  df-0g 16758  df-gsum 16759  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-mhm 18007  df-submnd 18008  df-grp 18157  df-minusg 18158  df-mulg 18277  df-subg 18328  df-ghm 18408  df-cntz 18499  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-subrg 19586  df-psr 20656  df-mpl 20658  df-opsr 20660  df-psr1 20889  df-ply1 20891  df-coe1 20892
This theorem is referenced by:  gsummoncoe1  21013  cpmatmcllem  21403  decpmatmullem  21456  mp2pm2mplem4  21494
  Copyright terms: Public domain W3C validator