MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   GIF version

Theorem coe1fzgsumd 21383
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
coe1fzgsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝐵)
coe1fzgsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
coe1fzgsumd (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem coe1fzgsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝐵)
2 coe1fzgsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3333 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ ∅ 𝑀𝐵))
43anbi2d 628 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵)))
5 mpteq1 5163 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 7271 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6760 . . . . . . . 8 (𝑛 = ∅ → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6758 . . . . . . 7 (𝑛 = ∅ → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾))
9 mpteq1 5163 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))
109oveq2d 7271 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
118, 10eqeq12d 2754 . . . . . 6 (𝑛 = ∅ → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))))
124, 11imbi12d 344 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))))
13 raleq 3333 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑚 𝑀𝐵))
1413anbi2d 628 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝐵)))
15 mpteq1 5163 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 7271 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6760 . . . . . . . 8 (𝑛 = 𝑚 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6758 . . . . . . 7 (𝑛 = 𝑚 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾))
19 mpteq1 5163 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
2019oveq2d 7271 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))
2118, 20eqeq12d 2754 . . . . . 6 (𝑛 = 𝑚 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))))
2214, 21imbi12d 344 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
23 raleq 3333 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵))
2423anbi2d 628 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵)))
25 mpteq1 5163 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 7271 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6760 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6758 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾))
29 mpteq1 5163 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))
3029oveq2d 7271 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
3128, 30eqeq12d 2754 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
3224, 31imbi12d 344 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
33 raleq 3333 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑁 𝑀𝐵))
3433anbi2d 628 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝐵)))
35 mpteq1 5163 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 7271 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6760 . . . . . . . 8 (𝑛 = 𝑁 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6758 . . . . . . 7 (𝑛 = 𝑁 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾))
39 mpteq1 5163 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))
4039oveq2d 7271 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
4138, 40eqeq12d 2754 . . . . . 6 (𝑛 = 𝑁 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
4234, 41imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
43 mpt0 6559 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 7266 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2738 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 18283 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2766 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6759 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃))
4948a1i 11 . . . . . . . . 9 (𝜑 → (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃)))
5049fveq1d 6758 . . . . . . . 8 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = ((coe1‘(0g𝑃))‘𝐾))
51 coe1fzgsumd.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 coe1fzgsumd.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
53 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5452, 45, 53coe1z 21344 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5551, 54syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5655fveq1d 6758 . . . . . . . 8 (𝜑 → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
57 fvex 6769 . . . . . . . . 9 (0g𝑅) ∈ V
58 coe1fzgsumd.k . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
59 fvconst2g 7059 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6057, 58, 59sylancr 586 . . . . . . . 8 (𝜑 → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6150, 56, 603eqtrd 2782 . . . . . . 7 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (0g𝑅))
62 mpt0 6559 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)) = ∅
6362oveq2i 7266 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg ∅)
6453gsum0 18283 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
6563, 64eqtri 2766 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (0g𝑅)
6661, 65eqtr4di 2797 . . . . . 6 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
68 coe1fzgsumd.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
6952, 68, 51, 58coe1fzgsumdlem 21382 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
70693expia 1119 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
7170a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
72 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
73 impexp 450 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7471, 72, 733imtr4g 295 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7512, 22, 32, 42, 67, 74findcard2s 8910 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
7675expd 415 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
772, 76mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
781, 77mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  c0 4253  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  Fincfn 8691  0cn0 12163  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  Ringcrg 19698  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  gsummoncoe1  21385  cpmatmcllem  21775  decpmatmullem  21828  mp2pm2mplem4  21866
  Copyright terms: Public domain W3C validator