MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpsr Structured version   Visualization version   GIF version

Theorem subrgpsr 20898
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgpsr.s 𝑆 = (𝐼 mPwSer 𝑅)
subrgpsr.h 𝐻 = (𝑅s 𝑇)
subrgpsr.u 𝑈 = (𝐼 mPwSer 𝐻)
subrgpsr.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgpsr ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))

Proof of Theorem subrgpsr
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgpsr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 simpl 486 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐼𝑉)
3 subrgrcl 19759 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
43adantl 485 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring)
51, 2, 4psrring 20890 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
6 subrgpsr.u . . . 4 𝑈 = (𝐼 mPwSer 𝐻)
7 subrgpsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
87subrgring 19757 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
98adantl 485 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring)
106, 2, 9psrring 20890 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring)
11 subrgpsr.b . . . . 5 𝐵 = (Base‘𝑈)
1211a1i 11 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈))
13 eqid 2736 . . . . 5 (𝑆s 𝐵) = (𝑆s 𝐵)
14 simpr 488 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅))
151, 7, 6, 11, 13, 14resspsrbas 20894 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆s 𝐵)))
161, 7, 6, 11, 13, 14resspsradd 20895 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑈)𝑦) = (𝑥(+g‘(𝑆s 𝐵))𝑦))
171, 7, 6, 11, 13, 14resspsrmul 20896 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑈)𝑦) = (𝑥(.r‘(𝑆s 𝐵))𝑦))
1812, 15, 16, 17ringpropd 19554 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆s 𝐵) ∈ Ring))
1910, 18mpbid 235 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑆s 𝐵) ∈ Ring)
20 eqid 2736 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2113, 20ressbasss 16740 . . . 4 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
2215, 21eqsstrdi 3941 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆))
23 eqid 2736 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
24 eqid 2736 . . . . . . 7 (0g𝑅) = (0g𝑅)
25 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
26 eqid 2736 . . . . . . 7 (1r𝑆) = (1r𝑆)
271, 2, 4, 23, 24, 25, 26psr1 20891 . . . . . 6 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2825subrg1cl 19762 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑇)
29 subrgsubg 19760 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
3024subg0cl 18505 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑇)
3129, 30syl 17 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑇)
3228, 31ifcld 4471 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
3332adantl 485 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
347subrgbas 19763 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3534adantl 485 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻))
3633, 35eleqtrd 2833 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3736adantr 484 . . . . . 6 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3827, 37fmpt3d 6911 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
39 fvex 6708 . . . . . 6 (Base‘𝐻) ∈ V
40 ovex 7224 . . . . . . 7 (ℕ0m 𝐼) ∈ V
4140rabex 5210 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4239, 41elmap 8530 . . . . 5 ((1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
4338, 42sylibr 237 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
44 eqid 2736 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
456, 44, 23, 11, 2psrbas 20857 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
4643, 45eleqtrrd 2834 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ 𝐵)
4722, 46jca 515 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
4820, 26issubrg 19754 . 2 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
495, 19, 47, 48syl21anbrc 1346 1 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {crab 3055  wss 3853  ifcif 4425  {csn 4527   × cxp 5534  ccnv 5535  cima 5539  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486  Fincfn 8604  0cc0 10694  cn 11795  0cn0 12055  Basecbs 16666  s cress 16667  0gc0g 16898  SubGrpcsubg 18491  1rcur 19470  Ringcrg 19516  SubRingcsubrg 19750   mPwSer cmps 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-ofr 7448  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-tset 16768  df-0g 16900  df-gsum 16901  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-mulg 18443  df-subg 18494  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-subrg 19752  df-psr 20822
This theorem is referenced by:  ressmplbas2  20938  subrgmpl  20943
  Copyright terms: Public domain W3C validator