| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgpsr | Structured version Visualization version GIF version | ||
| Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgpsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| subrgpsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgpsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| subrgpsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| subrgpsr | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐼 ∈ 𝑉) | |
| 3 | subrgrcl 20489 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring) |
| 5 | 1, 2, 4 | psrring 21905 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 6 | subrgpsr.u | . . . 4 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 7 | subrgpsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 8 | 7 | subrgring 20487 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring) |
| 10 | 6, 2, 9 | psrring 21905 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring) |
| 11 | subrgpsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈)) |
| 13 | eqid 2731 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅)) | |
| 15 | 1, 7, 6, 11, 13, 14 | resspsrbas 21909 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 16 | 1, 7, 6, 11, 13, 14 | resspsradd 21910 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑈)𝑦) = (𝑥(+g‘(𝑆 ↾s 𝐵))𝑦)) |
| 17 | 1, 7, 6, 11, 13, 14 | resspsrmul 21911 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑈)𝑦) = (𝑥(.r‘(𝑆 ↾s 𝐵))𝑦)) |
| 18 | 12, 15, 16, 17 | ringpropd 20204 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆 ↾s 𝐵) ∈ Ring)) |
| 19 | 10, 18 | mpbid 232 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 20 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 13, 20 | ressbasss 17147 | . . . 4 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 22 | 15, 21 | eqsstrdi 3979 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆)) |
| 23 | eqid 2731 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 1, 2, 4, 23, 24, 25, 26 | psr1 21906 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 28 | 25 | subrg1cl 20493 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑇) |
| 29 | subrgsubg 20490 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) | |
| 30 | 24 | subg0cl 19044 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 32 | 28, 31 | ifcld 4522 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 33 | 32 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 34 | 7 | subrgbas 20494 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 35 | 34 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻)) |
| 36 | 33, 35 | eleqtrd 2833 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 38 | 27, 37 | fmpt3d 7049 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 39 | fvex 6835 | . . . . . 6 ⊢ (Base‘𝐻) ∈ V | |
| 40 | ovex 7379 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 41 | 40 | rabex 5277 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 42 | 39, 41 | elmap 8795 | . . . . 5 ⊢ ((1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 43 | 38, 42 | sylibr 234 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 44 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 45 | 6, 44, 23, 11, 2 | psrbas 21868 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 46 | 43, 45 | eleqtrrd 2834 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ 𝐵) |
| 47 | 22, 46 | jca 511 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
| 48 | 20, 26 | issubrg 20484 | . 2 ⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
| 49 | 5, 19, 47, 48 | syl21anbrc 1345 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ifcif 4475 {csn 4576 × cxp 5614 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11003 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 ↾s cress 17138 0gc0g 17340 SubGrpcsubg 19030 1rcur 20097 Ringcrg 20149 SubRingcsubrg 20482 mPwSer cmps 21839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrng 20459 df-subrg 20483 df-psr 21844 |
| This theorem is referenced by: ressmplbas2 21960 subrgmpl 21965 |
| Copyright terms: Public domain | W3C validator |