MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpsr Structured version   Visualization version   GIF version

Theorem subrgpsr 21188
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgpsr.s 𝑆 = (𝐼 mPwSer 𝑅)
subrgpsr.h 𝐻 = (𝑅s 𝑇)
subrgpsr.u 𝑈 = (𝐼 mPwSer 𝐻)
subrgpsr.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgpsr ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))

Proof of Theorem subrgpsr
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgpsr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 simpl 483 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐼𝑉)
3 subrgrcl 20029 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
43adantl 482 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring)
51, 2, 4psrring 21180 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
6 subrgpsr.u . . . 4 𝑈 = (𝐼 mPwSer 𝐻)
7 subrgpsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
87subrgring 20027 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
98adantl 482 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring)
106, 2, 9psrring 21180 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring)
11 subrgpsr.b . . . . 5 𝐵 = (Base‘𝑈)
1211a1i 11 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈))
13 eqid 2738 . . . . 5 (𝑆s 𝐵) = (𝑆s 𝐵)
14 simpr 485 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅))
151, 7, 6, 11, 13, 14resspsrbas 21184 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆s 𝐵)))
161, 7, 6, 11, 13, 14resspsradd 21185 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑈)𝑦) = (𝑥(+g‘(𝑆s 𝐵))𝑦))
171, 7, 6, 11, 13, 14resspsrmul 21186 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑈)𝑦) = (𝑥(.r‘(𝑆s 𝐵))𝑦))
1812, 15, 16, 17ringpropd 19821 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆s 𝐵) ∈ Ring))
1910, 18mpbid 231 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑆s 𝐵) ∈ Ring)
20 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2113, 20ressbasss 16950 . . . 4 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
2215, 21eqsstrdi 3975 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆))
23 eqid 2738 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
24 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
25 eqid 2738 . . . . . . 7 (1r𝑅) = (1r𝑅)
26 eqid 2738 . . . . . . 7 (1r𝑆) = (1r𝑆)
271, 2, 4, 23, 24, 25, 26psr1 21181 . . . . . 6 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2825subrg1cl 20032 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑇)
29 subrgsubg 20030 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
3024subg0cl 18763 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑇)
3129, 30syl 17 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑇)
3228, 31ifcld 4505 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
3332adantl 482 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
347subrgbas 20033 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3534adantl 482 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻))
3633, 35eleqtrd 2841 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3736adantr 481 . . . . . 6 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3827, 37fmpt3d 6990 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
39 fvex 6787 . . . . . 6 (Base‘𝐻) ∈ V
40 ovex 7308 . . . . . . 7 (ℕ0m 𝐼) ∈ V
4140rabex 5256 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4239, 41elmap 8659 . . . . 5 ((1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
4338, 42sylibr 233 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
44 eqid 2738 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
456, 44, 23, 11, 2psrbas 21147 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
4643, 45eleqtrrd 2842 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ 𝐵)
4722, 46jca 512 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
4820, 26issubrg 20024 . 2 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
495, 19, 47, 48syl21anbrc 1343 1 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887  ifcif 4459  {csn 4561   × cxp 5587  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  0cc0 10871  cn 11973  0cn0 12233  Basecbs 16912  s cress 16941  0gc0g 17150  SubGrpcsubg 18749  1rcur 19737  Ringcrg 19783  SubRingcsubrg 20020   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-psr 21112
This theorem is referenced by:  ressmplbas2  21228  subrgmpl  21233
  Copyright terms: Public domain W3C validator