Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpsr Structured version   Visualization version   GIF version

Theorem subrgpsr 20661
 Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgpsr.s 𝑆 = (𝐼 mPwSer 𝑅)
subrgpsr.h 𝐻 = (𝑅s 𝑇)
subrgpsr.u 𝑈 = (𝐼 mPwSer 𝐻)
subrgpsr.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgpsr ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))

Proof of Theorem subrgpsr
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgpsr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 simpl 486 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐼𝑉)
3 subrgrcl 19537 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
43adantl 485 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring)
51, 2, 4psrring 20653 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
6 subrgpsr.u . . . 4 𝑈 = (𝐼 mPwSer 𝐻)
7 subrgpsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
87subrgring 19535 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
98adantl 485 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring)
106, 2, 9psrring 20653 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring)
11 subrgpsr.b . . . . 5 𝐵 = (Base‘𝑈)
1211a1i 11 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈))
13 eqid 2801 . . . . 5 (𝑆s 𝐵) = (𝑆s 𝐵)
14 simpr 488 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅))
151, 7, 6, 11, 13, 14resspsrbas 20657 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆s 𝐵)))
161, 7, 6, 11, 13, 14resspsradd 20658 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑈)𝑦) = (𝑥(+g‘(𝑆s 𝐵))𝑦))
171, 7, 6, 11, 13, 14resspsrmul 20659 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑈)𝑦) = (𝑥(.r‘(𝑆s 𝐵))𝑦))
1812, 15, 16, 17ringpropd 19332 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆s 𝐵) ∈ Ring))
1910, 18mpbid 235 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑆s 𝐵) ∈ Ring)
20 eqid 2801 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2113, 20ressbasss 16552 . . . 4 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
2215, 21eqsstrdi 3972 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆))
23 eqid 2801 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
24 eqid 2801 . . . . . . 7 (0g𝑅) = (0g𝑅)
25 eqid 2801 . . . . . . 7 (1r𝑅) = (1r𝑅)
26 eqid 2801 . . . . . . 7 (1r𝑆) = (1r𝑆)
271, 2, 4, 23, 24, 25, 26psr1 20654 . . . . . 6 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2825subrg1cl 19540 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑇)
29 subrgsubg 19538 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
3024subg0cl 18283 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑇)
3129, 30syl 17 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑇)
3228, 31ifcld 4473 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
3332adantl 485 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
347subrgbas 19541 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3534adantl 485 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻))
3633, 35eleqtrd 2895 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3736adantr 484 . . . . . 6 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3827, 37fmpt3d 6861 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
39 fvex 6662 . . . . . 6 (Base‘𝐻) ∈ V
40 ovex 7172 . . . . . . 7 (ℕ0m 𝐼) ∈ V
4140rabex 5202 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4239, 41elmap 8422 . . . . 5 ((1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
4338, 42sylibr 237 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
44 eqid 2801 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
456, 44, 23, 11, 2psrbas 20620 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
4643, 45eleqtrrd 2896 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ 𝐵)
4722, 46jca 515 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
4820, 26issubrg 19532 . 2 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
495, 19, 47, 48syl21anbrc 1341 1 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {crab 3113   ⊆ wss 3884  ifcif 4428  {csn 4528   × cxp 5521  ◡ccnv 5522   “ cima 5526  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393  Fincfn 8496  0cc0 10530  ℕcn 11629  ℕ0cn0 11889  Basecbs 16479   ↾s cress 16480  0gc0g 16709  SubGrpcsubg 18269  1rcur 19248  Ringcrg 19294  SubRingcsubrg 19528   mPwSer cmps 20593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-tset 16580  df-0g 16711  df-gsum 16712  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-psr 20598 This theorem is referenced by:  ressmplbas2  20699  subrgmpl  20704
 Copyright terms: Public domain W3C validator