| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgpsr | Structured version Visualization version GIF version | ||
| Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgpsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| subrgpsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgpsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| subrgpsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| subrgpsr | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐼 ∈ 𝑉) | |
| 3 | subrgrcl 20479 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring) |
| 5 | 1, 2, 4 | psrring 21895 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 6 | subrgpsr.u | . . . 4 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 7 | subrgpsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 8 | 7 | subrgring 20477 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring) |
| 10 | 6, 2, 9 | psrring 21895 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring) |
| 11 | subrgpsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅)) | |
| 15 | 1, 7, 6, 11, 13, 14 | resspsrbas 21899 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 16 | 1, 7, 6, 11, 13, 14 | resspsradd 21900 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑈)𝑦) = (𝑥(+g‘(𝑆 ↾s 𝐵))𝑦)) |
| 17 | 1, 7, 6, 11, 13, 14 | resspsrmul 21901 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑈)𝑦) = (𝑥(.r‘(𝑆 ↾s 𝐵))𝑦)) |
| 18 | 12, 15, 16, 17 | ringpropd 20191 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆 ↾s 𝐵) ∈ Ring)) |
| 19 | 10, 18 | mpbid 232 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 20 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 13, 20 | ressbasss 17168 | . . . 4 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 22 | 15, 21 | eqsstrdi 3982 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆)) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 1, 2, 4, 23, 24, 25, 26 | psr1 21896 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 28 | 25 | subrg1cl 20483 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑇) |
| 29 | subrgsubg 20480 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) | |
| 30 | 24 | subg0cl 19031 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 32 | 28, 31 | ifcld 4525 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 33 | 32 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 34 | 7 | subrgbas 20484 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 35 | 34 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻)) |
| 36 | 33, 35 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 38 | 27, 37 | fmpt3d 7054 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 39 | fvex 6839 | . . . . . 6 ⊢ (Base‘𝐻) ∈ V | |
| 40 | ovex 7386 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 41 | 40 | rabex 5281 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 42 | 39, 41 | elmap 8805 | . . . . 5 ⊢ ((1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 43 | 38, 42 | sylibr 234 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 44 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 45 | 6, 44, 23, 11, 2 | psrbas 21858 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 46 | 43, 45 | eleqtrrd 2831 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ 𝐵) |
| 47 | 22, 46 | jca 511 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
| 48 | 20, 26 | issubrg 20474 | . 2 ⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
| 49 | 5, 19, 47, 48 | syl21anbrc 1345 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ifcif 4478 {csn 4579 × cxp 5621 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 0gc0g 17361 SubGrpcsubg 19017 1rcur 20084 Ringcrg 20136 SubRingcsubrg 20472 mPwSer cmps 21829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrng 20449 df-subrg 20473 df-psr 21834 |
| This theorem is referenced by: ressmplbas2 21950 subrgmpl 21955 |
| Copyright terms: Public domain | W3C validator |