MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpsr Structured version   Visualization version   GIF version

Theorem subrgpsr 21916
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
subrgpsr.s 𝑆 = (𝐼 mPwSer 𝑅)
subrgpsr.h 𝐻 = (𝑅s 𝑇)
subrgpsr.u 𝑈 = (𝐼 mPwSer 𝐻)
subrgpsr.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgpsr ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))

Proof of Theorem subrgpsr
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgpsr.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 simpl 482 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐼𝑉)
3 subrgrcl 20493 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
43adantl 481 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring)
51, 2, 4psrring 21908 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
6 subrgpsr.u . . . 4 𝑈 = (𝐼 mPwSer 𝐻)
7 subrgpsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
87subrgring 20491 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
98adantl 481 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring)
106, 2, 9psrring 21908 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring)
11 subrgpsr.b . . . . 5 𝐵 = (Base‘𝑈)
1211a1i 11 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈))
13 eqid 2733 . . . . 5 (𝑆s 𝐵) = (𝑆s 𝐵)
14 simpr 484 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅))
151, 7, 6, 11, 13, 14resspsrbas 21912 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆s 𝐵)))
161, 7, 6, 11, 13, 14resspsradd 21913 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑈)𝑦) = (𝑥(+g‘(𝑆s 𝐵))𝑦))
171, 7, 6, 11, 13, 14resspsrmul 21914 . . . 4 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑈)𝑦) = (𝑥(.r‘(𝑆s 𝐵))𝑦))
1812, 15, 16, 17ringpropd 20208 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆s 𝐵) ∈ Ring))
1910, 18mpbid 232 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝑆s 𝐵) ∈ Ring)
20 eqid 2733 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2113, 20ressbasss 17152 . . . 4 (Base‘(𝑆s 𝐵)) ⊆ (Base‘𝑆)
2215, 21eqsstrdi 3975 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆))
23 eqid 2733 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
24 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
25 eqid 2733 . . . . . . 7 (1r𝑅) = (1r𝑅)
26 eqid 2733 . . . . . . 7 (1r𝑆) = (1r𝑆)
271, 2, 4, 23, 24, 25, 26psr1 21909 . . . . . 6 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2825subrg1cl 20497 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑇)
29 subrgsubg 20494 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
3024subg0cl 19049 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑇)
3129, 30syl 17 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑇)
3228, 31ifcld 4521 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
3332adantl 481 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ 𝑇)
347subrgbas 20498 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3534adantl 481 . . . . . . . 8 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻))
3633, 35eleqtrd 2835 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3736adantr 480 . . . . . 6 (((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝐻))
3827, 37fmpt3d 7055 . . . . 5 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
39 fvex 6841 . . . . . 6 (Base‘𝐻) ∈ V
40 ovex 7385 . . . . . . 7 (ℕ0m 𝐼) ∈ V
4140rabex 5279 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4239, 41elmap 8801 . . . . 5 ((1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (1r𝑆):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
4338, 42sylibr 234 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
44 eqid 2733 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
456, 44, 23, 11, 2psrbas 21872 . . . 4 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
4643, 45eleqtrrd 2836 . . 3 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (1r𝑆) ∈ 𝐵)
4722, 46jca 511 . 2 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
4820, 26issubrg 20488 . 2 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
495, 19, 47, 48syl21anbrc 1345 1 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  wss 3898  ifcif 4474  {csn 4575   × cxp 5617  ccnv 5618  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875  0cc0 11013  cn 12132  0cn0 12388  Basecbs 17122  s cress 17143  0gc0g 17345  SubGrpcsubg 19035  1rcur 20101  Ringcrg 20153  SubRingcsubrg 20486   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20463  df-subrg 20487  df-psr 21848
This theorem is referenced by:  ressmplbas2  21963  subrgmpl  21968
  Copyright terms: Public domain W3C validator