| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgpsr | Structured version Visualization version GIF version | ||
| Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgpsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| subrgpsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgpsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| subrgpsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| subrgpsr | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐼 ∈ 𝑉) | |
| 3 | subrgrcl 20485 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring) |
| 5 | 1, 2, 4 | psrring 21879 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 6 | subrgpsr.u | . . . 4 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 7 | subrgpsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 8 | 7 | subrgring 20483 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring) |
| 10 | 6, 2, 9 | psrring 21879 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring) |
| 11 | subrgpsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅)) | |
| 15 | 1, 7, 6, 11, 13, 14 | resspsrbas 21883 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 16 | 1, 7, 6, 11, 13, 14 | resspsradd 21884 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑈)𝑦) = (𝑥(+g‘(𝑆 ↾s 𝐵))𝑦)) |
| 17 | 1, 7, 6, 11, 13, 14 | resspsrmul 21885 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑈)𝑦) = (𝑥(.r‘(𝑆 ↾s 𝐵))𝑦)) |
| 18 | 12, 15, 16, 17 | ringpropd 20197 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆 ↾s 𝐵) ∈ Ring)) |
| 19 | 10, 18 | mpbid 232 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 20 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 13, 20 | ressbasss 17209 | . . . 4 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 22 | 15, 21 | eqsstrdi 3991 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆)) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 1, 2, 4, 23, 24, 25, 26 | psr1 21880 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 28 | 25 | subrg1cl 20489 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑇) |
| 29 | subrgsubg 20486 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) | |
| 30 | 24 | subg0cl 19066 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 32 | 28, 31 | ifcld 4535 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 33 | 32 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 34 | 7 | subrgbas 20490 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 35 | 34 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻)) |
| 36 | 33, 35 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 38 | 27, 37 | fmpt3d 7088 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 39 | fvex 6871 | . . . . . 6 ⊢ (Base‘𝐻) ∈ V | |
| 40 | ovex 7420 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 41 | 40 | rabex 5294 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 42 | 39, 41 | elmap 8844 | . . . . 5 ⊢ ((1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 43 | 38, 42 | sylibr 234 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 44 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 45 | 6, 44, 23, 11, 2 | psrbas 21842 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 46 | 43, 45 | eleqtrrd 2831 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ 𝐵) |
| 47 | 22, 46 | jca 511 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
| 48 | 20, 26 | issubrg 20480 | . 2 ⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
| 49 | 5, 19, 47, 48 | syl21anbrc 1345 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ifcif 4488 {csn 4589 × cxp 5636 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 0gc0g 17402 SubGrpcsubg 19052 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 mPwSer cmps 21813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-psr 21818 |
| This theorem is referenced by: ressmplbas2 21934 subrgmpl 21939 |
| Copyright terms: Public domain | W3C validator |