| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgpsr | Structured version Visualization version GIF version | ||
| Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgpsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| subrgpsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgpsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| subrgpsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| Ref | Expression |
|---|---|
| subrgpsr | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐼 ∈ 𝑉) | |
| 3 | subrgrcl 20544 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring) |
| 5 | 1, 2, 4 | psrring 21944 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
| 6 | subrgpsr.u | . . . 4 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 7 | subrgpsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 8 | 7 | subrgring 20542 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring) |
| 10 | 6, 2, 9 | psrring 21944 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring) |
| 11 | subrgpsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈)) |
| 13 | eqid 2734 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅)) | |
| 15 | 1, 7, 6, 11, 13, 14 | resspsrbas 21948 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
| 16 | 1, 7, 6, 11, 13, 14 | resspsradd 21949 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑈)𝑦) = (𝑥(+g‘(𝑆 ↾s 𝐵))𝑦)) |
| 17 | 1, 7, 6, 11, 13, 14 | resspsrmul 21950 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑈)𝑦) = (𝑥(.r‘(𝑆 ↾s 𝐵))𝑦)) |
| 18 | 12, 15, 16, 17 | ringpropd 20253 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆 ↾s 𝐵) ∈ Ring)) |
| 19 | 10, 18 | mpbid 232 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 20 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 13, 20 | ressbasss 17262 | . . . 4 ⊢ (Base‘(𝑆 ↾s 𝐵)) ⊆ (Base‘𝑆) |
| 22 | 15, 21 | eqsstrdi 4008 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆)) |
| 23 | eqid 2734 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 24 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 25 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 27 | 1, 2, 4, 23, 24, 25, 26 | psr1 21945 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 28 | 25 | subrg1cl 20548 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑇) |
| 29 | subrgsubg 20545 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) | |
| 30 | 24 | subg0cl 19121 | . . . . . . . . . . 11 ⊢ (𝑇 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) ∈ 𝑇) |
| 32 | 28, 31 | ifcld 4552 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 33 | 32 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
| 34 | 7 | subrgbas 20549 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 35 | 34 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻)) |
| 36 | 33, 35 | eleqtrd 2835 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
| 38 | 27, 37 | fmpt3d 7116 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 39 | fvex 6899 | . . . . . 6 ⊢ (Base‘𝐻) ∈ V | |
| 40 | ovex 7446 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 41 | 40 | rabex 5319 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 42 | 39, 41 | elmap 8893 | . . . . 5 ⊢ ((1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (1r‘𝑆):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻)) |
| 43 | 38, 42 | sylibr 234 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 44 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 45 | 6, 44, 23, 11, 2 | psrbas 21907 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 46 | 43, 45 | eleqtrrd 2836 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ 𝐵) |
| 47 | 22, 46 | jca 511 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
| 48 | 20, 26 | issubrg 20539 | . 2 ⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
| 49 | 5, 19, 47, 48 | syl21anbrc 1344 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ifcif 4505 {csn 4606 × cxp 5663 ◡ccnv 5664 “ cima 5668 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 0cc0 11137 ℕcn 12248 ℕ0cn0 12509 Basecbs 17229 ↾s cress 17252 0gc0g 17455 SubGrpcsubg 19107 1rcur 20146 Ringcrg 20198 SubRingcsubrg 20537 mPwSer cmps 21878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cntz 19304 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-subrng 20514 df-subrg 20538 df-psr 21883 |
| This theorem is referenced by: ressmplbas2 21999 subrgmpl 22004 |
| Copyright terms: Public domain | W3C validator |