Step | Hyp | Ref
| Expression |
1 | | subrgpsr.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | simpl 483 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐼 ∈ 𝑉) |
3 | | subrgrcl 20029 |
. . . 4
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
4 | 3 | adantl 482 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑅 ∈ Ring) |
5 | 1, 2, 4 | psrring 21180 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring) |
6 | | subrgpsr.u |
. . . 4
⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
7 | | subrgpsr.h |
. . . . . 6
⊢ 𝐻 = (𝑅 ↾s 𝑇) |
8 | 7 | subrgring 20027 |
. . . . 5
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
9 | 8 | adantl 482 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐻 ∈ Ring) |
10 | 6, 2, 9 | psrring 21180 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑈 ∈ Ring) |
11 | | subrgpsr.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑈) |
12 | 11 | a1i 11 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘𝑈)) |
13 | | eqid 2738 |
. . . . 5
⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) |
14 | | simpr 485 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 ∈ (SubRing‘𝑅)) |
15 | 1, 7, 6, 11, 13, 14 | resspsrbas 21184 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
16 | 1, 7, 6, 11, 13, 14 | resspsradd 21185 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑈)𝑦) = (𝑥(+g‘(𝑆 ↾s 𝐵))𝑦)) |
17 | 1, 7, 6, 11, 13, 14 | resspsrmul 21186 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑈)𝑦) = (𝑥(.r‘(𝑆 ↾s 𝐵))𝑦)) |
18 | 12, 15, 16, 17 | ringpropd 19821 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑈 ∈ Ring ↔ (𝑆 ↾s 𝐵) ∈ Ring)) |
19 | 10, 18 | mpbid 231 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝑆 ↾s 𝐵) ∈ Ring) |
20 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
21 | 13, 20 | ressbasss 16950 |
. . . 4
⊢
(Base‘(𝑆
↾s 𝐵))
⊆ (Base‘𝑆) |
22 | 15, 21 | eqsstrdi 3975 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ⊆ (Base‘𝑆)) |
23 | | eqid 2738 |
. . . . . . 7
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
24 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑆) = (1r‘𝑆) |
27 | 1, 2, 4, 23, 24, 25, 26 | psr1 21181 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) = (𝑥 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
28 | 25 | subrg1cl 20032 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubRing‘𝑅) →
(1r‘𝑅)
∈ 𝑇) |
29 | | subrgsubg 20030 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) |
30 | 24 | subg0cl 18763 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ (SubGrp‘𝑅) →
(0g‘𝑅)
∈ 𝑇) |
31 | 29, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubRing‘𝑅) →
(0g‘𝑅)
∈ 𝑇) |
32 | 28, 31 | ifcld 4505 |
. . . . . . . . 9
⊢ (𝑇 ∈ (SubRing‘𝑅) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
33 | 32 | adantl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ 𝑇) |
34 | 7 | subrgbas 20033 |
. . . . . . . . 9
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
35 | 34 | adantl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝑇 = (Base‘𝐻)) |
36 | 33, 35 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
37 | 36 | adantr 481 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝐻)) |
38 | 27, 37 | fmpt3d 6990 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆):{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
39 | | fvex 6787 |
. . . . . 6
⊢
(Base‘𝐻)
∈ V |
40 | | ovex 7308 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
41 | 40 | rabex 5256 |
. . . . . 6
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
42 | 39, 41 | elmap 8659 |
. . . . 5
⊢
((1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔
(1r‘𝑆):{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
43 | 38, 42 | sylibr 233 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
44 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐻) =
(Base‘𝐻) |
45 | 6, 44, 23, 11, 2 | psrbas 21147 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
46 | 43, 45 | eleqtrrd 2842 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (1r‘𝑆) ∈ 𝐵) |
47 | 22, 46 | jca 512 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
48 | 20, 26 | issubrg 20024 |
. 2
⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
49 | 5, 19, 47, 48 | syl21anbrc 1343 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) |