![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrf | Structured version Visualization version GIF version |
Description: The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mvrf.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mvrf.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrf.b | ⊢ 𝐵 = (Base‘𝑆) |
mvrf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrf.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mvrf | ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrf.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | eqid 2724 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | eqid 2724 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2724 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mvrf.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | 1, 2, 3, 4, 5, 6 | mvrfval 21852 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
8 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 4 | ringidcl 20157 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 6, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | 8, 3 | ring0cl 20158 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
13 | 10, 12 | ifcld 4567 | . . . . . 6 ⊢ (𝜑 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
14 | 13 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
15 | 14 | fmpttd 7107 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
16 | fvex 6895 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
17 | ovex 7435 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
18 | 17 | rabex 5323 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
19 | 16, 18 | elmap 8862 | . . . 4 ⊢ ((𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ↔ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
20 | 15, 19 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
21 | mvrf.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
22 | mvrf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
23 | 21, 8, 2, 22, 5 | psrbas 21808 | . . . 4 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
25 | 20, 24 | eleqtrrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
26 | 7, 25 | fmpt3d 7108 | 1 ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3424 ifcif 4521 ↦ cmpt 5222 ◡ccnv 5666 “ cima 5670 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 Fincfn 8936 0cc0 11107 1c1 11108 ℕcn 12210 ℕ0cn0 12470 Basecbs 17145 0gc0g 17386 1rcur 20078 Ringcrg 20130 mPwSer cmps 21768 mVar cmvr 21769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-tset 17217 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-mgp 20032 df-ur 20079 df-ring 20132 df-psr 21773 df-mvr 21774 |
This theorem is referenced by: mvrf1 21857 mvrcl2 21858 mvrf2 21864 subrgmvrf 21901 mplbas2 21909 evlseu 21958 |
Copyright terms: Public domain | W3C validator |