Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mvrf | Structured version Visualization version GIF version |
Description: The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mvrf.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mvrf.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrf.b | ⊢ 𝐵 = (Base‘𝑆) |
mvrf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrf.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mvrf | ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrf.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | eqid 2738 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mvrf.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | 1, 2, 3, 4, 5, 6 | mvrfval 21189 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 4 | ringidcl 19807 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 6, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | 8, 3 | ring0cl 19808 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
13 | 10, 12 | ifcld 4505 | . . . . . 6 ⊢ (𝜑 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
14 | 13 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
15 | 14 | fmpttd 6989 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
16 | fvex 6787 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
17 | ovex 7308 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
18 | 17 | rabex 5256 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
19 | 16, 18 | elmap 8659 | . . . 4 ⊢ ((𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ↔ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
20 | 15, 19 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
21 | mvrf.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
22 | mvrf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
23 | 21, 8, 2, 22, 5 | psrbas 21147 | . . . 4 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
24 | 23 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
25 | 20, 24 | eleqtrrd 2842 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
26 | 7, 25 | fmpt3d 6990 | 1 ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ifcif 4459 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 0cc0 10871 1c1 10872 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 0gc0g 17150 1rcur 19737 Ringcrg 19783 mPwSer cmps 21107 mVar cmvr 21108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-mgp 19721 df-ur 19738 df-ring 19785 df-psr 21112 df-mvr 21113 |
This theorem is referenced by: mvrf1 21194 mvrcl2 21195 subrgmvrf 21235 mplbas2 21243 mvrf2 21268 evlseu 21293 |
Copyright terms: Public domain | W3C validator |