MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf Structured version   Visualization version   GIF version

Theorem mvrf 21543
Description: The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mvrf (𝜑𝑉:𝐼𝐵)

Proof of Theorem mvrf
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
2 eqid 2732 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2732 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2732 . . 3 (1r𝑅) = (1r𝑅)
5 mvrf.i . . 3 (𝜑𝐼𝑊)
6 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
71, 2, 3, 4, 5, 6mvrfval 21539 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
8 eqid 2732 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
98, 4ringidcl 20082 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
106, 9syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
118, 3ring0cl 20083 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
126, 11syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1310, 12ifcld 4574 . . . . . 6 (𝜑 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
1413ad2antrr 724 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
1514fmpttd 7114 . . . 4 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
16 fvex 6904 . . . . 5 (Base‘𝑅) ∈ V
17 ovex 7441 . . . . . 6 (ℕ0m 𝐼) ∈ V
1817rabex 5332 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
1916, 18elmap 8864 . . . 4 ((𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ↔ (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2015, 19sylibr 233 . . 3 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
21 mvrf.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
22 mvrf.b . . . . 5 𝐵 = (Base‘𝑆)
2321, 8, 2, 22, 5psrbas 21496 . . . 4 (𝜑𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
2423adantr 481 . . 3 ((𝜑𝑥𝐼) → 𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
2520, 24eleqtrrd 2836 . 2 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ 𝐵)
267, 25fmpt3d 7115 1 (𝜑𝑉:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  ifcif 4528  cmpt 5231  ccnv 5675  cima 5679  wf 6539  cfv 6543  (class class class)co 7408  m cmap 8819  Fincfn 8938  0cc0 11109  1c1 11110  cn 12211  0cn0 12471  Basecbs 17143  0gc0g 17384  1rcur 20003  Ringcrg 20055   mPwSer cmps 21456   mVar cmvr 21457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-mgp 19987  df-ur 20004  df-ring 20057  df-psr 21461  df-mvr 21462
This theorem is referenced by:  mvrf1  21544  mvrcl2  21545  mvrf2  21551  subrgmvrf  21588  mplbas2  21596  evlseu  21645
  Copyright terms: Public domain W3C validator