![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrf | Structured version Visualization version GIF version |
Description: The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mvrf.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mvrf.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrf.b | ⊢ 𝐵 = (Base‘𝑆) |
mvrf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrf.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mvrf | ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrf.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | eqid 2733 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2733 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mvrf.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | 1, 2, 3, 4, 5, 6 | mvrfval 21412 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
8 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 4 | ringidcl 19997 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 6, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | 8, 3 | ring0cl 19998 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
13 | 10, 12 | ifcld 4536 | . . . . . 6 ⊢ (𝜑 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
14 | 13 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
15 | 14 | fmpttd 7067 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
16 | fvex 6859 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
17 | ovex 7394 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
18 | 17 | rabex 5293 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
19 | 16, 18 | elmap 8815 | . . . 4 ⊢ ((𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ↔ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
20 | 15, 19 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
21 | mvrf.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
22 | mvrf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
23 | 21, 8, 2, 22, 5 | psrbas 21369 | . . . 4 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
24 | 23 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})) |
25 | 20, 24 | eleqtrrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
26 | 7, 25 | fmpt3d 7068 | 1 ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3406 ifcif 4490 ↦ cmpt 5192 ◡ccnv 5636 “ cima 5640 ⟶wf 6496 ‘cfv 6500 (class class class)co 7361 ↑m cmap 8771 Fincfn 8889 0cc0 11059 1c1 11060 ℕcn 12161 ℕ0cn0 12421 Basecbs 17091 0gc0g 17329 1rcur 19921 Ringcrg 19972 mPwSer cmps 21329 mVar cmvr 21330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-plusg 17154 df-mulr 17155 df-sca 17157 df-vsca 17158 df-tset 17160 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-mgp 19905 df-ur 19922 df-ring 19974 df-psr 21334 df-mvr 21335 |
This theorem is referenced by: mvrf1 21417 mvrcl2 21418 subrgmvrf 21458 mplbas2 21466 mvrf2 21491 evlseu 21516 |
Copyright terms: Public domain | W3C validator |