MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf Structured version   Visualization version   GIF version

Theorem mvrf 21921
Description: The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s 𝑆 = (𝐼 mPwSer 𝑅)
mvrf.v 𝑉 = (𝐼 mVar 𝑅)
mvrf.b 𝐵 = (Base‘𝑆)
mvrf.i (𝜑𝐼𝑊)
mvrf.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mvrf (𝜑𝑉:𝐼𝐵)

Proof of Theorem mvrf
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.v . . 3 𝑉 = (𝐼 mVar 𝑅)
2 eqid 2728 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2728 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2728 . . 3 (1r𝑅) = (1r𝑅)
5 mvrf.i . . 3 (𝜑𝐼𝑊)
6 mvrf.r . . 3 (𝜑𝑅 ∈ Ring)
71, 2, 3, 4, 5, 6mvrfval 21917 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
8 eqid 2728 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
98, 4ringidcl 20196 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
106, 9syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
118, 3ring0cl 20197 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
126, 11syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
1310, 12ifcld 4571 . . . . . 6 (𝜑 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
1413ad2antrr 725 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
1514fmpttd 7120 . . . 4 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
16 fvex 6905 . . . . 5 (Base‘𝑅) ∈ V
17 ovex 7448 . . . . . 6 (ℕ0m 𝐼) ∈ V
1817rabex 5329 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
1916, 18elmap 8884 . . . 4 ((𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ↔ (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2015, 19sylibr 233 . . 3 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
21 mvrf.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
22 mvrf.b . . . . 5 𝐵 = (Base‘𝑆)
2321, 8, 2, 22, 5psrbas 21872 . . . 4 (𝜑𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
2423adantr 480 . . 3 ((𝜑𝑥𝐼) → 𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
2520, 24eleqtrrd 2832 . 2 ((𝜑𝑥𝐼) → (𝑓 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) ∈ 𝐵)
267, 25fmpt3d 7121 1 (𝜑𝑉:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3428  ifcif 4525  cmpt 5226  ccnv 5672  cima 5676  wf 6539  cfv 6543  (class class class)co 7415  m cmap 8839  Fincfn 8958  0cc0 11133  1c1 11134  cn 12237  0cn0 12497  Basecbs 17174  0gc0g 17415  1rcur 20115  Ringcrg 20167   mPwSer cmps 21831   mVar cmvr 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18887  df-mgp 20069  df-ur 20116  df-ring 20169  df-psr 21836  df-mvr 21837
This theorem is referenced by:  mvrf1  21922  mvrcl2  21923  mvrf2  21929  subrgmvrf  21966  mplbas2  21974  evlseu  22023
  Copyright terms: Public domain W3C validator