![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgmvr | Structured version Visualization version GIF version |
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgmvr.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
subrgmvr.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgmvr.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgmvr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
Ref | Expression |
---|---|
subrgmvr | ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgmvr.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
2 | subrgmvr.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2726 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | subrg1 20566 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
6 | eqid 2726 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 2, 6 | subrg0 20563 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
9 | 5, 8 | ifeq12d 4554 | . . . 4 ⊢ (𝜑 → if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))) |
10 | 9 | mpteq2dv 5255 | . . 3 ⊢ (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻)))) |
11 | 10 | mpteq2dv 5255 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
12 | subrgmvr.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
13 | eqid 2726 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
14 | subrgmvr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
15 | subrgrcl 20560 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
16 | 1, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
17 | 12, 13, 6, 3, 14, 16 | mvrfval 21990 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
18 | eqid 2726 | . . 3 ⊢ (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻) | |
19 | eqid 2726 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
20 | eqid 2726 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
21 | 2 | ovexi 7458 | . . . 4 ⊢ 𝐻 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
23 | 18, 13, 19, 20, 14, 22 | mvrfval 21990 | . 2 ⊢ (𝜑 → (𝐼 mVar 𝐻) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
24 | 11, 17, 23 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ifcif 4533 ↦ cmpt 5236 ◡ccnv 5681 “ cima 5685 ‘cfv 6554 (class class class)co 7424 ↑m cmap 8855 Fincfn 8974 0cc0 11158 1c1 11159 ℕcn 12264 ℕ0cn0 12524 ↾s cress 17242 0gc0g 17454 1rcur 20164 Ringcrg 20216 SubRingcsubrg 20551 mVar cmvr 21902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-subg 19117 df-mgp 20118 df-ur 20165 df-ring 20218 df-subrg 20553 df-mvr 21907 |
This theorem is referenced by: subrgmvrf 22041 evlsvarsrng 22114 evlvar 22115 subrgvr1 22252 evls1var 22329 |
Copyright terms: Public domain | W3C validator |