| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgmvr | Structured version Visualization version GIF version | ||
| Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgmvr.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| subrgmvr.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| subrgmvr.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| subrgmvr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| Ref | Expression |
|---|---|
| subrgmvr | ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmvr.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 2 | subrgmvr.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | subrg1 20491 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 2, 6 | subrg0 20488 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
| 9 | 5, 8 | ifeq12d 4510 | . . . 4 ⊢ (𝜑 → if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))) |
| 10 | 9 | mpteq2dv 5201 | . . 3 ⊢ (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻)))) |
| 11 | 10 | mpteq2dv 5201 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
| 12 | subrgmvr.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 13 | eqid 2729 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 14 | subrgmvr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 15 | subrgrcl 20485 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 17 | 12, 13, 6, 3, 14, 16 | mvrfval 21890 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
| 18 | eqid 2729 | . . 3 ⊢ (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻) | |
| 19 | eqid 2729 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 20 | eqid 2729 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 21 | 2 | ovexi 7421 | . . . 4 ⊢ 𝐻 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 23 | 18, 13, 19, 20, 14, 22 | mvrfval 21890 | . 2 ⊢ (𝜑 → (𝐼 mVar 𝐻) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
| 24 | 11, 17, 23 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ifcif 4488 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 0cc0 11068 1c1 11069 ℕcn 12186 ℕ0cn0 12442 ↾s cress 17200 0gc0g 17402 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 mVar cmvr 21814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-subrg 20479 df-mvr 21819 |
| This theorem is referenced by: subrgmvrf 21941 evlsvarsrng 22006 evlvar 22007 subrgvr1 22147 evls1var 22225 |
| Copyright terms: Public domain | W3C validator |