MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Structured version   Visualization version   GIF version

Theorem subrgmvr 21305
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
Assertion
Ref Expression
subrgmvr (𝜑𝑉 = (𝐼 mVar 𝐻))

Proof of Theorem subrgmvr
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
2 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
3 eqid 2737 . . . . . . 7 (1r𝑅) = (1r𝑅)
42, 3subrg1 20105 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
51, 4syl 17 . . . . 5 (𝜑 → (1r𝑅) = (1r𝐻))
6 eqid 2737 . . . . . . 7 (0g𝑅) = (0g𝑅)
72, 6subrg0 20102 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
81, 7syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
95, 8ifeq12d 4490 . . . 4 (𝜑 → if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) = if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))
109mpteq2dv 5187 . . 3 (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻))))
1110mpteq2dv 5187 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
12 subrgmvr.v . . 3 𝑉 = (𝐼 mVar 𝑅)
13 eqid 2737 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 subrgmvr.i . . 3 (𝜑𝐼𝑊)
15 subrgrcl 20100 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
161, 15syl 17 . . 3 (𝜑𝑅 ∈ Ring)
1712, 13, 6, 3, 14, 16mvrfval 21260 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
18 eqid 2737 . . 3 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
19 eqid 2737 . . 3 (0g𝐻) = (0g𝐻)
20 eqid 2737 . . 3 (1r𝐻) = (1r𝐻)
212ovexi 7347 . . . 4 𝐻 ∈ V
2221a1i 11 . . 3 (𝜑𝐻 ∈ V)
2318, 13, 19, 20, 14, 22mvrfval 21260 . 2 (𝜑 → (𝐼 mVar 𝐻) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
2411, 17, 233eqtr4d 2787 1 (𝜑𝑉 = (𝐼 mVar 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3404  Vcvv 3441  ifcif 4469  cmpt 5168  ccnv 5604  cima 5608  cfv 6463  (class class class)co 7313  m cmap 8661  Fincfn 8779  0cc0 10941  1c1 10942  cn 12043  0cn0 12303  s cress 17008  0gc0g 17217  1rcur 19804  Ringcrg 19850  SubRingcsubrg 20091   mVar cmvr 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-grp 18647  df-subg 18819  df-mgp 19788  df-ur 19805  df-ring 19852  df-subrg 20093  df-mvr 21184
This theorem is referenced by:  subrgmvrf  21306  evlsvarsrng  21380  evlvar  21381  subrgvr1  21503  evls1var  21575
  Copyright terms: Public domain W3C validator