MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Structured version   Visualization version   GIF version

Theorem subrgmvr 21956
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
Assertion
Ref Expression
subrgmvr (𝜑𝑉 = (𝐼 mVar 𝐻))

Proof of Theorem subrgmvr
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
2 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
3 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
42, 3subrg1 20485 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
51, 4syl 17 . . . . 5 (𝜑 → (1r𝑅) = (1r𝐻))
6 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
72, 6subrg0 20482 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
81, 7syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
95, 8ifeq12d 4500 . . . 4 (𝜑 → if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) = if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))
109mpteq2dv 5189 . . 3 (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻))))
1110mpteq2dv 5189 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
12 subrgmvr.v . . 3 𝑉 = (𝐼 mVar 𝑅)
13 eqid 2729 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 subrgmvr.i . . 3 (𝜑𝐼𝑊)
15 subrgrcl 20479 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
161, 15syl 17 . . 3 (𝜑𝑅 ∈ Ring)
1712, 13, 6, 3, 14, 16mvrfval 21906 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
18 eqid 2729 . . 3 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
19 eqid 2729 . . 3 (0g𝐻) = (0g𝐻)
20 eqid 2729 . . 3 (1r𝐻) = (1r𝐻)
212ovexi 7387 . . . 4 𝐻 ∈ V
2221a1i 11 . . 3 (𝜑𝐻 ∈ V)
2318, 13, 19, 20, 14, 22mvrfval 21906 . 2 (𝜑 → (𝐼 mVar 𝐻) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
2411, 17, 233eqtr4d 2774 1 (𝜑𝑉 = (𝐼 mVar 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  ifcif 4478  cmpt 5176  ccnv 5622  cima 5626  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  0cc0 11028  1c1 11029  cn 12146  0cn0 12402  s cress 17159  0gc0g 17361  1rcur 20084  Ringcrg 20136  SubRingcsubrg 20472   mVar cmvr 21830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-subg 19020  df-mgp 20044  df-ur 20085  df-ring 20138  df-subrg 20473  df-mvr 21835
This theorem is referenced by:  subrgmvrf  21957  evlsvarsrng  22022  evlvar  22023  subrgvr1  22163  evls1var  22241
  Copyright terms: Public domain W3C validator