Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgmvr | Structured version Visualization version GIF version |
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgmvr.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
subrgmvr.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgmvr.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgmvr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
Ref | Expression |
---|---|
subrgmvr | ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgmvr.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
2 | subrgmvr.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2737 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | subrg1 20105 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
6 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 2, 6 | subrg0 20102 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
9 | 5, 8 | ifeq12d 4490 | . . . 4 ⊢ (𝜑 → if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))) |
10 | 9 | mpteq2dv 5187 | . . 3 ⊢ (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻)))) |
11 | 10 | mpteq2dv 5187 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
12 | subrgmvr.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
13 | eqid 2737 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
14 | subrgmvr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
15 | subrgrcl 20100 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
16 | 1, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
17 | 12, 13, 6, 3, 14, 16 | mvrfval 21260 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
18 | eqid 2737 | . . 3 ⊢ (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻) | |
19 | eqid 2737 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
20 | eqid 2737 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
21 | 2 | ovexi 7347 | . . . 4 ⊢ 𝐻 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
23 | 18, 13, 19, 20, 14, 22 | mvrfval 21260 | . 2 ⊢ (𝜑 → (𝐼 mVar 𝐻) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
24 | 11, 17, 23 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3404 Vcvv 3441 ifcif 4469 ↦ cmpt 5168 ◡ccnv 5604 “ cima 5608 ‘cfv 6463 (class class class)co 7313 ↑m cmap 8661 Fincfn 8779 0cc0 10941 1c1 10942 ℕcn 12043 ℕ0cn0 12303 ↾s cress 17008 0gc0g 17217 1rcur 19804 Ringcrg 19850 SubRingcsubrg 20091 mVar cmvr 21179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-subg 18819 df-mgp 19788 df-ur 19805 df-ring 19852 df-subrg 20093 df-mvr 21184 |
This theorem is referenced by: subrgmvrf 21306 evlsvarsrng 21380 evlvar 21381 subrgvr1 21503 evls1var 21575 |
Copyright terms: Public domain | W3C validator |