| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgmvr | Structured version Visualization version GIF version | ||
| Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgmvr.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| subrgmvr.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| subrgmvr.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| subrgmvr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| Ref | Expression |
|---|---|
| subrgmvr | ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmvr.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 2 | subrgmvr.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | subrg1 20583 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝐻)) |
| 6 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 2, 6 | subrg0 20580 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
| 9 | 5, 8 | ifeq12d 4546 | . . . 4 ⊢ (𝜑 → if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)) = if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))) |
| 10 | 9 | mpteq2dv 5243 | . . 3 ⊢ (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻)))) |
| 11 | 10 | mpteq2dv 5243 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅)))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
| 12 | subrgmvr.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 13 | eqid 2736 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 14 | subrgmvr.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 15 | subrgrcl 20577 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 17 | 12, 13, 6, 3, 14, 16 | mvrfval 22002 | . 2 ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝑅), (0g‘𝑅))))) |
| 18 | eqid 2736 | . . 3 ⊢ (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻) | |
| 19 | eqid 2736 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 20 | eqid 2736 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 21 | 2 | ovexi 7466 | . . . 4 ⊢ 𝐻 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 23 | 18, 13, 19, 20, 14, 22 | mvrfval 22002 | . 2 ⊢ (𝜑 → (𝐼 mVar 𝐻) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧 ∈ 𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r‘𝐻), (0g‘𝐻))))) |
| 24 | 11, 17, 23 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 ifcif 4524 ↦ cmpt 5224 ◡ccnv 5683 “ cima 5687 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 0cc0 11156 1c1 11157 ℕcn 12267 ℕ0cn0 12528 ↾s cress 17275 0gc0g 17485 1rcur 20179 Ringcrg 20231 SubRingcsubrg 20570 mVar cmvr 21926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-subg 19142 df-mgp 20139 df-ur 20180 df-ring 20233 df-subrg 20571 df-mvr 21931 |
| This theorem is referenced by: subrgmvrf 22053 evlsvarsrng 22124 evlvar 22125 subrgvr1 22265 evls1var 22343 |
| Copyright terms: Public domain | W3C validator |