MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Structured version   Visualization version   GIF version

Theorem subrgmvr 22069
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
Assertion
Ref Expression
subrgmvr (𝜑𝑉 = (𝐼 mVar 𝐻))

Proof of Theorem subrgmvr
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
2 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
3 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
42, 3subrg1 20599 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
51, 4syl 17 . . . . 5 (𝜑 → (1r𝑅) = (1r𝐻))
6 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
72, 6subrg0 20596 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
81, 7syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
95, 8ifeq12d 4552 . . . 4 (𝜑 → if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) = if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))
109mpteq2dv 5250 . . 3 (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻))))
1110mpteq2dv 5250 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
12 subrgmvr.v . . 3 𝑉 = (𝐼 mVar 𝑅)
13 eqid 2735 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 subrgmvr.i . . 3 (𝜑𝐼𝑊)
15 subrgrcl 20593 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
161, 15syl 17 . . 3 (𝜑𝑅 ∈ Ring)
1712, 13, 6, 3, 14, 16mvrfval 22019 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
18 eqid 2735 . . 3 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
19 eqid 2735 . . 3 (0g𝐻) = (0g𝐻)
20 eqid 2735 . . 3 (1r𝐻) = (1r𝐻)
212ovexi 7465 . . . 4 𝐻 ∈ V
2221a1i 11 . . 3 (𝜑𝐻 ∈ V)
2318, 13, 19, 20, 14, 22mvrfval 22019 . 2 (𝜑 → (𝐼 mVar 𝐻) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
2411, 17, 233eqtr4d 2785 1 (𝜑𝑉 = (𝐼 mVar 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  s cress 17274  0gc0g 17486  1rcur 20199  Ringcrg 20251  SubRingcsubrg 20586   mVar cmvr 21943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-subg 19154  df-mgp 20153  df-ur 20200  df-ring 20253  df-subrg 20587  df-mvr 21948
This theorem is referenced by:  subrgmvrf  22070  evlsvarsrng  22141  evlvar  22142  subrgvr1  22280  evls1var  22358
  Copyright terms: Public domain W3C validator