MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topssnei Structured version   Visualization version   GIF version

Theorem topssnei 23147
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1 𝑋 = 𝐽
topssnei.2 𝑌 = 𝐾
Assertion
Ref Expression
topssnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))

Proof of Theorem topssnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top)
2 simprl 771 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽𝐾)
3 simpl1 1190 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top)
4 simprr 773 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
5 tpnei.1 . . . . . . . . 9 𝑋 = 𝐽
65neii1 23129 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
73, 4, 6syl2anc 584 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑋)
85ntropn 23072 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
93, 7, 8syl2anc 584 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
102, 9sseldd 3995 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾)
115neiss2 23124 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
123, 4, 11syl2anc 584 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆𝑋)
135neiint 23127 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
143, 12, 7, 13syl3anc 1370 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
154, 14mpbid 232 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥))
16 opnneiss 23141 . . . . 5 ((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ 𝐾𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
171, 10, 15, 16syl3anc 1370 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
185ntrss2 23080 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
193, 7, 18syl2anc 584 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
20 simpl3 1192 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌)
217, 20sseqtrd 4035 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑌)
22 topssnei.2 . . . . 5 𝑌 = 𝐾
2322ssnei2 23139 . . . 4 (((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥𝑥𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
241, 17, 19, 21, 23syl22anc 839 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
2524expr 456 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)))
2625ssrdv 4000 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wss 3962   cuni 4911  cfv 6562  Topctop 22914  intcnt 23040  neicnei 23120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-top 22915  df-ntr 23043  df-nei 23121
This theorem is referenced by:  flimss1  23996
  Copyright terms: Public domain W3C validator