| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1193 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top) |
| 2 | | simprl 771 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ⊆ 𝐾) |
| 3 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top) |
| 4 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
| 5 | | tpnei.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
| 6 | 5 | neii1 23114 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥 ⊆ 𝑋) |
| 7 | 3, 4, 6 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ⊆ 𝑋) |
| 8 | 5 | ntropn 23057 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
| 9 | 3, 7, 8 | syl2anc 584 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
| 10 | 2, 9 | sseldd 3984 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾) |
| 11 | 5 | neiss2 23109 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
| 12 | 3, 4, 11 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ 𝑋) |
| 13 | 5 | neiint 23112 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥))) |
| 14 | 3, 12, 7, 13 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥))) |
| 15 | 4, 14 | mpbid 232 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥)) |
| 16 | | opnneiss 23126 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧
((int‘𝐽)‘𝑥) ∈ 𝐾 ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) |
| 17 | 1, 10, 15, 16 | syl3anc 1373 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) |
| 18 | 5 | ntrss2 23065 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
| 19 | 3, 7, 18 | syl2anc 584 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
| 20 | | simpl3 1194 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌) |
| 21 | 7, 20 | sseqtrd 4020 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ⊆ 𝑌) |
| 22 | | topssnei.2 |
. . . . 5
⊢ 𝑌 = ∪
𝐾 |
| 23 | 22 | ssnei2 23124 |
. . . 4
⊢ (((𝐾 ∈ Top ∧
((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)) |
| 24 | 1, 17, 19, 21, 23 | syl22anc 839 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)) |
| 25 | 24 | expr 456 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))) |
| 26 | 25 | ssrdv 3989 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |