MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topssnei Structured version   Visualization version   GIF version

Theorem topssnei 23153
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1 𝑋 = 𝐽
topssnei.2 𝑌 = 𝐾
Assertion
Ref Expression
topssnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))

Proof of Theorem topssnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top)
2 simprl 770 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽𝐾)
3 simpl1 1191 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top)
4 simprr 772 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
5 tpnei.1 . . . . . . . . 9 𝑋 = 𝐽
65neii1 23135 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
73, 4, 6syl2anc 583 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑋)
85ntropn 23078 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
93, 7, 8syl2anc 583 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
102, 9sseldd 4009 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾)
115neiss2 23130 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
123, 4, 11syl2anc 583 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆𝑋)
135neiint 23133 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
143, 12, 7, 13syl3anc 1371 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
154, 14mpbid 232 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥))
16 opnneiss 23147 . . . . 5 ((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ 𝐾𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
171, 10, 15, 16syl3anc 1371 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
185ntrss2 23086 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
193, 7, 18syl2anc 583 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
20 simpl3 1193 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌)
217, 20sseqtrd 4049 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑌)
22 topssnei.2 . . . . 5 𝑌 = 𝐾
2322ssnei2 23145 . . . 4 (((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥𝑥𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
241, 17, 19, 21, 23syl22anc 838 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
2524expr 456 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)))
2625ssrdv 4014 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976   cuni 4931  cfv 6573  Topctop 22920  intcnt 23046  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-ntr 23049  df-nei 23127
This theorem is referenced by:  flimss1  24002
  Copyright terms: Public domain W3C validator