Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version |
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
issubc.i | ⊢ 1 = (Id‘𝐶) |
issubc.o | ⊢ · = (comp‘𝐶) |
issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
6 | 5 | fndmd 6538 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
7 | 6 | dmeqd 5814 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
8 | dmxpid 5839 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
9 | 7, 8 | eqtr2di 2795 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
10 | 1, 2, 3, 4, 9 | issubc 17550 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 class class class wbr 5074 × cxp 5587 dom cdm 5589 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 compcco 16974 Catccat 17373 Idccid 17374 Homf chomf 17375 ⊆cat cssc 17519 Subcatcsubc 17521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-ixp 8686 df-ssc 17522 df-subc 17524 |
This theorem is referenced by: 0subcat 17553 catsubcat 17554 subcidcl 17559 subccocl 17560 issubc3 17564 fullsubc 17565 rnghmsubcsetc 45535 rhmsubcsetc 45581 rhmsubcrngc 45587 srhmsubc 45634 rhmsubc 45648 srhmsubcALTV 45652 rhmsubcALTV 45666 |
Copyright terms: Public domain | W3C validator |