| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| issubc.i | ⊢ 1 = (Id‘𝐶) |
| issubc.o | ⊢ · = (comp‘𝐶) |
| issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
| 3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
| 4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 6 | 5 | fndmd 6643 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
| 7 | 6 | dmeqd 5885 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
| 8 | dmxpid 5910 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 9 | 7, 8 | eqtr2di 2787 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
| 10 | 1, 2, 3, 4, 9 | issubc 17848 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 〈cop 4607 class class class wbr 5119 × cxp 5652 dom cdm 5654 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 compcco 17283 Catccat 17676 Idccid 17677 Homf chomf 17678 ⊆cat cssc 17820 Subcatcsubc 17822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pm 8843 df-ixp 8912 df-ssc 17823 df-subc 17825 |
| This theorem is referenced by: 0subcat 17851 catsubcat 17852 subcidcl 17857 subccocl 17858 issubc3 17862 fullsubc 17863 rnghmsubcsetc 20593 rhmsubcsetc 20622 rhmsubcrngc 20628 srhmsubc 20640 rhmsubc 20649 rhmsubcALTV 48260 srhmsubcALTV 48300 iinfsubc 49025 discsubc 49031 nelsubc2 49036 imasubc3 49096 |
| Copyright terms: Public domain | W3C validator |