| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| issubc.i | ⊢ 1 = (Id‘𝐶) |
| issubc.o | ⊢ · = (comp‘𝐶) |
| issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
| 3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
| 4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 6 | 5 | fndmd 6623 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
| 7 | 6 | dmeqd 5869 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
| 8 | dmxpid 5894 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 9 | 7, 8 | eqtr2di 2781 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
| 10 | 1, 2, 3, 4, 9 | issubc 17797 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4595 class class class wbr 5107 × cxp 5636 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 compcco 17232 Catccat 17625 Idccid 17626 Homf chomf 17627 ⊆cat cssc 17769 Subcatcsubc 17771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pm 8802 df-ixp 8871 df-ssc 17772 df-subc 17774 |
| This theorem is referenced by: 0subcat 17800 catsubcat 17801 subcidcl 17806 subccocl 17807 issubc3 17811 fullsubc 17812 rnghmsubcsetc 20542 rhmsubcsetc 20571 rhmsubcrngc 20577 srhmsubc 20589 rhmsubc 20598 rhmsubcALTV 48273 srhmsubcALTV 48313 iinfsubc 49047 discsubc 49053 nelsubc2 49058 imasubc3 49145 |
| Copyright terms: Public domain | W3C validator |