MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc2 Structured version   Visualization version   GIF version

Theorem issubc2 17106
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc2.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc2
StepHypRef Expression
1 issubc.h . 2 𝐻 = (Homf𝐶)
2 issubc.i . 2 1 = (Id‘𝐶)
3 issubc.o . 2 · = (comp‘𝐶)
4 issubc.c . 2 (𝜑𝐶 ∈ Cat)
5 issubc2.a . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
6 fndm 6455 . . . . 5 (𝐽 Fn (𝑆 × 𝑆) → dom 𝐽 = (𝑆 × 𝑆))
75, 6syl 17 . . . 4 (𝜑 → dom 𝐽 = (𝑆 × 𝑆))
87dmeqd 5774 . . 3 (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆))
9 dmxpid 5800 . . 3 dom (𝑆 × 𝑆) = 𝑆
108, 9syl6req 2873 . 2 (𝜑𝑆 = dom dom 𝐽)
111, 2, 3, 4, 10issubc 17105 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cop 4573   class class class wbr 5066   × cxp 5553  dom cdm 5555   Fn wfn 6350  cfv 6355  (class class class)co 7156  compcco 16577  Catccat 16935  Idccid 16936  Homf chomf 16937  cat cssc 17077  Subcatcsubc 17079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-pm 8409  df-ixp 8462  df-ssc 17080  df-subc 17082
This theorem is referenced by:  0subcat  17108  catsubcat  17109  subcidcl  17114  subccocl  17115  issubc3  17119  fullsubc  17120  rnghmsubcsetc  44268  rhmsubcsetc  44314  rhmsubcrngc  44320  srhmsubc  44367  rhmsubc  44381  srhmsubcALTV  44385  rhmsubcALTV  44399
  Copyright terms: Public domain W3C validator