![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version |
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
issubc.h | β’ π» = (Homf βπΆ) |
issubc.i | β’ 1 = (IdβπΆ) |
issubc.o | β’ Β· = (compβπΆ) |
issubc.c | β’ (π β πΆ β Cat) |
issubc2.a | β’ (π β π½ Fn (π Γ π)) |
Ref | Expression |
---|---|
issubc2 | β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubc.h | . 2 β’ π» = (Homf βπΆ) | |
2 | issubc.i | . 2 β’ 1 = (IdβπΆ) | |
3 | issubc.o | . 2 β’ Β· = (compβπΆ) | |
4 | issubc.c | . 2 β’ (π β πΆ β Cat) | |
5 | issubc2.a | . . . . 5 β’ (π β π½ Fn (π Γ π)) | |
6 | 5 | fndmd 6612 | . . . 4 β’ (π β dom π½ = (π Γ π)) |
7 | 6 | dmeqd 5866 | . . 3 β’ (π β dom dom π½ = dom (π Γ π)) |
8 | dmxpid 5890 | . . 3 β’ dom (π Γ π) = π | |
9 | 7, 8 | eqtr2di 2794 | . 2 β’ (π β π = dom dom π½) |
10 | 1, 2, 3, 4, 9 | issubc 17728 | 1 β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3065 β¨cop 4597 class class class wbr 5110 Γ cxp 5636 dom cdm 5638 Fn wfn 6496 βcfv 6501 (class class class)co 7362 compcco 17152 Catccat 17551 Idccid 17552 Homf chomf 17553 βcat cssc 17697 Subcatcsubc 17699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-pm 8775 df-ixp 8843 df-ssc 17700 df-subc 17702 |
This theorem is referenced by: 0subcat 17731 catsubcat 17732 subcidcl 17737 subccocl 17738 issubc3 17742 fullsubc 17743 rnghmsubcsetc 46349 rhmsubcsetc 46395 rhmsubcrngc 46401 srhmsubc 46448 rhmsubc 46462 srhmsubcALTV 46466 rhmsubcALTV 46480 |
Copyright terms: Public domain | W3C validator |