| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| issubc.i | ⊢ 1 = (Id‘𝐶) |
| issubc.o | ⊢ · = (comp‘𝐶) |
| issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
| 3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
| 4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 6 | 5 | fndmd 6626 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
| 7 | 6 | dmeqd 5872 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
| 8 | dmxpid 5897 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 9 | 7, 8 | eqtr2di 2782 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
| 10 | 1, 2, 3, 4, 9 | issubc 17804 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 class class class wbr 5110 × cxp 5639 dom cdm 5641 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 compcco 17239 Catccat 17632 Idccid 17633 Homf chomf 17634 ⊆cat cssc 17776 Subcatcsubc 17778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-ixp 8874 df-ssc 17779 df-subc 17781 |
| This theorem is referenced by: 0subcat 17807 catsubcat 17808 subcidcl 17813 subccocl 17814 issubc3 17818 fullsubc 17819 rnghmsubcsetc 20549 rhmsubcsetc 20578 rhmsubcrngc 20584 srhmsubc 20596 rhmsubc 20605 rhmsubcALTV 48277 srhmsubcALTV 48317 iinfsubc 49051 discsubc 49057 nelsubc2 49062 imasubc3 49149 |
| Copyright terms: Public domain | W3C validator |