MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc2 Structured version   Visualization version   GIF version

Theorem issubc2 17798
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc2.a (𝜑𝐽 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
issubc2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc2
StepHypRef Expression
1 issubc.h . 2 𝐻 = (Homf𝐶)
2 issubc.i . 2 1 = (Id‘𝐶)
3 issubc.o . 2 · = (comp‘𝐶)
4 issubc.c . 2 (𝜑𝐶 ∈ Cat)
5 issubc2.a . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
65fndmd 6623 . . . 4 (𝜑 → dom 𝐽 = (𝑆 × 𝑆))
76dmeqd 5869 . . 3 (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆))
8 dmxpid 5894 . . 3 dom (𝑆 × 𝑆) = 𝑆
97, 8eqtr2di 2781 . 2 (𝜑𝑆 = dom dom 𝐽)
101, 2, 3, 4, 9issubc 17797 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107   × cxp 5636  dom cdm 5638   Fn wfn 6506  cfv 6511  (class class class)co 7387  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  cat cssc 17769  Subcatcsubc 17771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-ixp 8871  df-ssc 17772  df-subc 17774
This theorem is referenced by:  0subcat  17800  catsubcat  17801  subcidcl  17806  subccocl  17807  issubc3  17811  fullsubc  17812  rnghmsubcsetc  20542  rhmsubcsetc  20571  rhmsubcrngc  20577  srhmsubc  20589  rhmsubc  20598  rhmsubcALTV  48273  srhmsubcALTV  48313  iinfsubc  49047  discsubc  49053  nelsubc2  49058  imasubc3  49145
  Copyright terms: Public domain W3C validator