| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| issubc.i | ⊢ 1 = (Id‘𝐶) |
| issubc.o | ⊢ · = (comp‘𝐶) |
| issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
| 3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
| 4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 6 | 5 | fndmd 6591 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
| 7 | 6 | dmeqd 5852 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
| 8 | dmxpid 5876 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 9 | 7, 8 | eqtr2di 2781 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
| 10 | 1, 2, 3, 4, 9 | issubc 17760 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4585 class class class wbr 5095 × cxp 5621 dom cdm 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 compcco 17191 Catccat 17588 Idccid 17589 Homf chomf 17590 ⊆cat cssc 17732 Subcatcsubc 17734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-pm 8763 df-ixp 8832 df-ssc 17735 df-subc 17737 |
| This theorem is referenced by: 0subcat 17763 catsubcat 17764 subcidcl 17769 subccocl 17770 issubc3 17774 fullsubc 17775 rnghmsubcsetc 20536 rhmsubcsetc 20565 rhmsubcrngc 20571 srhmsubc 20583 rhmsubc 20592 rhmsubcALTV 48273 srhmsubcALTV 48313 iinfsubc 49047 discsubc 49053 nelsubc2 49058 imasubc3 49145 |
| Copyright terms: Public domain | W3C validator |