Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nltle2tri Structured version   Visualization version   GIF version

Theorem nltle2tri 47437
Description: Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020.)
Assertion
Ref Expression
nltle2tri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))

Proof of Theorem nltle2tri
StepHypRef Expression
1 xrltletr 13058 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
2 id 22 . . . . . . . . . 10 (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
32impcom 407 . . . . . . . . 9 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → 𝐴 < 𝐶)
4 xrltnle 11186 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
543adant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
65biimpd 229 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 → ¬ 𝐶𝐴))
76imp 406 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → ¬ 𝐶𝐴)
87olcd 874 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
98expcom 413 . . . . . . . . 9 (𝐴 < 𝐶 → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
103, 9syl 17 . . . . . . . 8 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1110ex 412 . . . . . . 7 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1211com23 86 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1312impd 410 . . . . 5 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
14 id 22 . . . . . . 7 (¬ (𝐴 < 𝐵𝐵𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶))
1514orcd 873 . . . . . 6 (¬ (𝐴 < 𝐵𝐵𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
1615a1d 25 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1713, 16pm2.61i 182 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
18 df-3an 1088 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
1918notbii 320 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
20 ianor 983 . . . . 5 (¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2119, 20bitri 275 . . . 4 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2217, 21sylibr 234 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
2322ex 412 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴)))
241, 23mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2113   class class class wbr 5093  *cxr 11152   < clt 11153  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  icceuelpart  47560
  Copyright terms: Public domain W3C validator