Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nltle2tri Structured version   Visualization version   GIF version

Theorem nltle2tri 46828
Description: Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020.)
Assertion
Ref Expression
nltle2tri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))

Proof of Theorem nltle2tri
StepHypRef Expression
1 xrltletr 13171 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
2 id 22 . . . . . . . . . 10 (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
32impcom 406 . . . . . . . . 9 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → 𝐴 < 𝐶)
4 xrltnle 11313 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
543adant2 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
65biimpd 228 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 → ¬ 𝐶𝐴))
76imp 405 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → ¬ 𝐶𝐴)
87olcd 872 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
98expcom 412 . . . . . . . . 9 (𝐴 < 𝐶 → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
103, 9syl 17 . . . . . . . 8 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1110ex 411 . . . . . . 7 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1211com23 86 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1312impd 409 . . . . 5 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
14 id 22 . . . . . . 7 (¬ (𝐴 < 𝐵𝐵𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶))
1514orcd 871 . . . . . 6 (¬ (𝐴 < 𝐵𝐵𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
1615a1d 25 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1713, 16pm2.61i 182 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
18 df-3an 1086 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
1918notbii 319 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
20 ianor 979 . . . . 5 (¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2119, 20bitri 274 . . . 4 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2217, 21sylibr 233 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
2322ex 411 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴)))
241, 23mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084  wcel 2098   class class class wbr 5149  *cxr 11279   < clt 11280  cle 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286
This theorem is referenced by:  icceuelpart  46910
  Copyright terms: Public domain W3C validator