Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltletr | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
xrltletr | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleloe 12867 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | xrlttr 12863 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expcomd 417 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
5 | breq2 5079 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐶)) | |
6 | 5 | biimpd 228 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 856 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
10 | 9 | impcomd 412 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5075 ℝ*cxr 10997 < clt 10998 ≤ cle 10999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-pre-lttri 10934 ax-pre-lttrn 10935 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-po 5500 df-so 5501 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 |
This theorem is referenced by: xrltletrd 12884 xrre2 12893 xrre3 12894 ge0gtmnf 12895 xrltmin 12905 supxrunb1 13042 iooss2 13104 ioc0 13115 iccssioo 13137 icossico 13138 icossioo 13161 ioossioo 13162 icoun 13196 ioounsn 13198 ioojoin 13204 lecldbas 22359 mnfnei 22361 icopnfcld 23920 ovolicopnf 24677 voliunlem3 24705 volsup 24709 ioombl 24718 volivth 24760 itg2seq 24896 itg2monolem2 24905 dvfsumrlimge0 25183 dvfsumrlim2 25185 itgsubst 25202 abelth 25589 tanord1 25682 rlimcnp 26104 rlimcnp2 26105 dchrisum0lem2a 26654 pnt 26751 joiniooico 31082 esumfsup 32025 lfuhgr2 33067 relowlssretop 35521 heicant 35799 itg2gt0cn 35819 asindmre 35847 nltle2tri 44762 i0oii 46170 |
Copyright terms: Public domain | W3C validator |