MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletr Structured version   Visualization version   GIF version

Theorem xrltletr 12891
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrltletr
StepHypRef Expression
1 xrleloe 12878 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 xrlttr 12874 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 417 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5078 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 228 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 856 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 412 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  xrltletrd  12895  xrre2  12904  xrre3  12905  ge0gtmnf  12906  xrltmin  12916  supxrunb1  13053  iooss2  13115  ioc0  13126  iccssioo  13148  icossico  13149  icossioo  13172  ioossioo  13173  icoun  13207  ioounsn  13209  ioojoin  13215  lecldbas  22370  mnfnei  22372  icopnfcld  23931  ovolicopnf  24688  voliunlem3  24716  volsup  24720  ioombl  24729  volivth  24771  itg2seq  24907  itg2monolem2  24916  dvfsumrlimge0  25194  dvfsumrlim2  25196  itgsubst  25213  abelth  25600  tanord1  25693  rlimcnp  26115  rlimcnp2  26116  dchrisum0lem2a  26665  pnt  26762  joiniooico  31095  esumfsup  32038  lfuhgr2  33080  relowlssretop  35534  heicant  35812  itg2gt0cn  35832  asindmre  35860  nltle2tri  44805  i0oii  46213
  Copyright terms: Public domain W3C validator