MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletr Structured version   Visualization version   GIF version

Theorem xrltletr 13139
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrltletr
StepHypRef Expression
1 xrleloe 13126 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1127 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 xrlttr 13122 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 416 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5145 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 228 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 856 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 411 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5141  *cxr 11248   < clt 11249  cle 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255
This theorem is referenced by:  xrltletrd  13143  xrre2  13152  xrre3  13153  ge0gtmnf  13154  xrltmin  13164  supxrunb1  13301  iooss2  13363  ioc0  13374  iccssioo  13396  icossico  13397  icossioo  13420  ioossioo  13421  icoun  13455  ioounsn  13457  ioojoin  13463  lecldbas  23073  mnfnei  23075  icopnfcld  24634  ovolicopnf  25403  voliunlem3  25431  volsup  25435  ioombl  25444  volivth  25486  itg2seq  25622  itg2monolem2  25631  dvfsumrlimge0  25915  dvfsumrlim2  25917  itgsubst  25934  abelth  26328  tanord1  26421  rlimcnp  26847  rlimcnp2  26848  dchrisum0lem2a  27400  pnt  27497  joiniooico  32489  esumfsup  33597  lfuhgr2  34636  relowlssretop  36750  heicant  37035  itg2gt0cn  37055  asindmre  37083  nltle2tri  46575  i0oii  47808
  Copyright terms: Public domain W3C validator