MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletr Structured version   Visualization version   GIF version

Theorem xrltletr 13135
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrltletr
StepHypRef Expression
1 xrleloe 13122 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 xrlttr 13118 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 417 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5152 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 228 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 857 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 412 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5148  *cxr 11246   < clt 11247  cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253
This theorem is referenced by:  xrltletrd  13139  xrre2  13148  xrre3  13149  ge0gtmnf  13150  xrltmin  13160  supxrunb1  13297  iooss2  13359  ioc0  13370  iccssioo  13392  icossico  13393  icossioo  13416  ioossioo  13417  icoun  13451  ioounsn  13453  ioojoin  13459  lecldbas  22722  mnfnei  22724  icopnfcld  24283  ovolicopnf  25040  voliunlem3  25068  volsup  25072  ioombl  25081  volivth  25123  itg2seq  25259  itg2monolem2  25268  dvfsumrlimge0  25546  dvfsumrlim2  25548  itgsubst  25565  abelth  25952  tanord1  26045  rlimcnp  26467  rlimcnp2  26468  dchrisum0lem2a  27017  pnt  27114  joiniooico  31980  esumfsup  33063  lfuhgr2  34104  relowlssretop  36239  heicant  36518  itg2gt0cn  36538  asindmre  36566  nltle2tri  46011  i0oii  47542
  Copyright terms: Public domain W3C validator