Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 23483 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | fovrn 7442 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
3 | 1, 2 | syl3an1 1162 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 Metcmet 20583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-met 20591 |
This theorem is referenced by: mettri2 23494 metrtri 23510 prdsmet 23523 imasf1omet 23529 blpnf 23550 bl2in 23553 mscl 23614 metss2lem 23667 methaus 23676 nmf2 23749 metdsre 24016 iscmet3lem1 24455 minveclem2 24590 minveclem3b 24592 minveclem3 24593 minveclem4 24596 minveclem7 24599 dvlog2lem 25807 vacn 29056 nmcvcn 29057 smcnlem 29059 blocni 29167 minvecolem2 29237 minvecolem3 29238 minvecolem4 29242 minvecolem7 29245 metf1o 35913 mettrifi 35915 lmclim2 35916 geomcau 35917 isbnd3 35942 isbnd3b 35943 ssbnd 35946 totbndbnd 35947 equivbnd 35948 prdsbnd 35951 heibor1lem 35967 heiborlem6 35974 bfplem1 35980 bfplem2 35981 bfp 35982 rrncmslem 35990 rrnequiv 35993 rrntotbnd 35994 ioorrnopnlem 43845 |
Copyright terms: Public domain | W3C validator |