| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version | ||
| Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| Ref | Expression |
|---|---|
| metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 24285 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | fovcdm 7585 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 Metcmet 21312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-met 21320 |
| This theorem is referenced by: mettri2 24296 metrtri 24312 prdsmet 24325 imasf1omet 24331 blpnf 24352 bl2in 24355 mscl 24416 metss2lem 24468 methaus 24477 nmf2 24550 metdsre 24811 iscmet3lem1 25261 minveclem2 25396 minveclem3b 25398 minveclem3 25399 minveclem4 25402 minveclem7 25405 dvlog2lem 26630 vacn 30641 nmcvcn 30642 smcnlem 30644 blocni 30752 minvecolem2 30822 minvecolem3 30823 minvecolem4 30827 minvecolem7 30830 metf1o 37721 mettrifi 37723 lmclim2 37724 geomcau 37725 isbnd3 37750 isbnd3b 37751 ssbnd 37754 totbndbnd 37755 equivbnd 37756 prdsbnd 37759 heibor1lem 37775 heiborlem6 37782 bfplem1 37788 bfplem2 37789 bfp 37790 rrncmslem 37798 rrnequiv 37801 rrntotbnd 37802 ioorrnopnlem 46276 |
| Copyright terms: Public domain | W3C validator |