| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version | ||
| Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| Ref | Expression |
|---|---|
| metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 24234 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | fovcdm 7523 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 Metcmet 21265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-met 21273 |
| This theorem is referenced by: mettri2 24245 metrtri 24261 prdsmet 24274 imasf1omet 24280 blpnf 24301 bl2in 24304 mscl 24365 metss2lem 24415 methaus 24424 nmf2 24497 metdsre 24758 iscmet3lem1 25207 minveclem2 25342 minveclem3b 25344 minveclem3 25345 minveclem4 25348 minveclem7 25351 dvlog2lem 26577 vacn 30656 nmcvcn 30657 smcnlem 30659 blocni 30767 minvecolem2 30837 minvecolem3 30838 minvecolem4 30842 minvecolem7 30845 metf1o 37734 mettrifi 37736 lmclim2 37737 geomcau 37738 isbnd3 37763 isbnd3b 37764 ssbnd 37767 totbndbnd 37768 equivbnd 37769 prdsbnd 37772 heibor1lem 37788 heiborlem6 37795 bfplem1 37801 bfplem2 37802 bfp 37803 rrncmslem 37811 rrnequiv 37814 rrntotbnd 37815 ioorrnopnlem 46286 |
| Copyright terms: Public domain | W3C validator |