| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version | ||
| Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| Ref | Expression |
|---|---|
| metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 24224 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | fovcdm 7561 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 × cxp 5638 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 Metcmet 21256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-met 21264 |
| This theorem is referenced by: mettri2 24235 metrtri 24251 prdsmet 24264 imasf1omet 24270 blpnf 24291 bl2in 24294 mscl 24355 metss2lem 24405 methaus 24414 nmf2 24487 metdsre 24748 iscmet3lem1 25197 minveclem2 25332 minveclem3b 25334 minveclem3 25335 minveclem4 25338 minveclem7 25341 dvlog2lem 26567 vacn 30629 nmcvcn 30630 smcnlem 30632 blocni 30740 minvecolem2 30810 minvecolem3 30811 minvecolem4 30815 minvecolem7 30818 metf1o 37744 mettrifi 37746 lmclim2 37747 geomcau 37748 isbnd3 37773 isbnd3b 37774 ssbnd 37777 totbndbnd 37778 equivbnd 37779 prdsbnd 37782 heibor1lem 37798 heiborlem6 37805 bfplem1 37811 bfplem2 37812 bfp 37813 rrncmslem 37821 rrnequiv 37824 rrntotbnd 37825 ioorrnopnlem 46295 |
| Copyright terms: Public domain | W3C validator |