![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 22643 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | fovrn 7134 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
3 | 1, 2 | syl3an1 1143 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 ∈ wcel 2050 × cxp 5405 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 ℝcr 10334 Metcmet 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-map 8208 df-met 20241 |
This theorem is referenced by: mettri2 22654 metrtri 22670 prdsmet 22683 imasf1omet 22689 blpnf 22710 bl2in 22713 mscl 22774 metss2lem 22824 methaus 22833 nmf2 22905 metdsre 23164 iscmet3lem1 23597 minveclem2 23732 minveclem3b 23734 minveclem3 23735 minveclem4 23738 minveclem7 23741 dvlog2lem 24936 vacn 28248 nmcvcn 28249 smcnlem 28251 blocni 28359 minvecolem2 28430 minvecolem3 28431 minvecolem4 28435 minvecolem7 28438 metf1o 34478 mettrifi 34480 lmclim2 34481 geomcau 34482 isbnd3 34510 isbnd3b 34511 ssbnd 34514 totbndbnd 34515 equivbnd 34516 prdsbnd 34519 heibor1lem 34535 heiborlem6 34542 bfplem1 34548 bfplem2 34549 bfp 34550 rrncmslem 34558 rrnequiv 34561 rrntotbnd 34562 ioorrnopnlem 42026 |
Copyright terms: Public domain | W3C validator |