| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version | ||
| Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| Ref | Expression |
|---|---|
| metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 24218 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | fovcdm 7559 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 Metcmet 21250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-met 21258 |
| This theorem is referenced by: mettri2 24229 metrtri 24245 prdsmet 24258 imasf1omet 24264 blpnf 24285 bl2in 24288 mscl 24349 metss2lem 24399 methaus 24408 nmf2 24481 metdsre 24742 iscmet3lem1 25191 minveclem2 25326 minveclem3b 25328 minveclem3 25329 minveclem4 25332 minveclem7 25335 dvlog2lem 26561 vacn 30623 nmcvcn 30624 smcnlem 30626 blocni 30734 minvecolem2 30804 minvecolem3 30805 minvecolem4 30809 minvecolem7 30812 metf1o 37749 mettrifi 37751 lmclim2 37752 geomcau 37753 isbnd3 37778 isbnd3b 37779 ssbnd 37782 totbndbnd 37783 equivbnd 37784 prdsbnd 37787 heibor1lem 37803 heiborlem6 37810 bfplem1 37816 bfplem2 37817 bfp 37818 rrncmslem 37826 rrnequiv 37829 rrntotbnd 37830 ioorrnopnlem 46302 |
| Copyright terms: Public domain | W3C validator |