![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
metcl | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 24365 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | fovcdm 7610 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
3 | 1, 2 | syl3an1 1164 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 × cxp 5691 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ℝcr 11161 Metcmet 21377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-map 8876 df-met 21385 |
This theorem is referenced by: mettri2 24376 metrtri 24392 prdsmet 24405 imasf1omet 24411 blpnf 24432 bl2in 24435 mscl 24496 metss2lem 24549 methaus 24558 nmf2 24631 metdsre 24900 iscmet3lem1 25350 minveclem2 25485 minveclem3b 25487 minveclem3 25488 minveclem4 25491 minveclem7 25494 dvlog2lem 26720 vacn 30739 nmcvcn 30740 smcnlem 30742 blocni 30850 minvecolem2 30920 minvecolem3 30921 minvecolem4 30925 minvecolem7 30928 metf1o 37756 mettrifi 37758 lmclim2 37759 geomcau 37760 isbnd3 37785 isbnd3b 37786 ssbnd 37789 totbndbnd 37790 equivbnd 37791 prdsbnd 37794 heibor1lem 37810 heiborlem6 37817 bfplem1 37823 bfplem2 37824 bfp 37825 rrncmslem 37833 rrnequiv 37836 rrntotbnd 37837 ioorrnopnlem 46288 |
Copyright terms: Public domain | W3C validator |