Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp3 Structured version   Visualization version   GIF version

Theorem isngp3 23207
 Description: The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
isngp3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isngp3
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
4 isngp2.x . . 3 𝑋 = (Base‘𝐺)
5 eqid 2801 . . 3 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5isngp2 23206 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
74, 3msmet2 23070 . . . . . . . . 9 (𝐺 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
81, 4, 3, 5nmf2 23202 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
97, 8sylan2 595 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
104, 2grpsubf 18173 . . . . . . . . 9 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1110adantr 484 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → :(𝑋 × 𝑋)⟶𝑋)
12 fco 6509 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
139, 11, 12syl2anc 587 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
1413ffnd 6492 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝑁 ) Fn (𝑋 × 𝑋))
157adantl 485 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
16 metf 22940 . . . . . . 7 ((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)):(𝑋 × 𝑋)⟶ℝ)
17 ffn 6491 . . . . . . 7 ((𝐷 ↾ (𝑋 × 𝑋)):(𝑋 × 𝑋)⟶ℝ → (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋))
1815, 16, 173syl 18 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋))
19 eqfnov2 7264 . . . . . 6 (((𝑁 ) Fn (𝑋 × 𝑋) ∧ (𝐷 ↾ (𝑋 × 𝑋)) Fn (𝑋 × 𝑋)) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦)))
2014, 18, 19syl2anc 587 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦)))
21 opelxpi 5560 . . . . . . . . . 10 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
22 fvco3 6741 . . . . . . . . . 10 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋)) → ((𝑁 )‘⟨𝑥, 𝑦⟩) = (𝑁‘( ‘⟨𝑥, 𝑦⟩)))
2311, 21, 22syl2an 598 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁 )‘⟨𝑥, 𝑦⟩) = (𝑁‘( ‘⟨𝑥, 𝑦⟩)))
24 df-ov 7142 . . . . . . . . 9 (𝑥(𝑁 )𝑦) = ((𝑁 )‘⟨𝑥, 𝑦⟩)
25 df-ov 7142 . . . . . . . . . 10 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
2625fveq2i 6652 . . . . . . . . 9 (𝑁‘(𝑥 𝑦)) = (𝑁‘( ‘⟨𝑥, 𝑦⟩))
2723, 24, 263eqtr4g 2861 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑁 )𝑦) = (𝑁‘(𝑥 𝑦)))
28 ovres 7298 . . . . . . . . 9 ((𝑥𝑋𝑦𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) = (𝑥𝐷𝑦))
2928adantl 485 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) = (𝑥𝐷𝑦))
3027, 29eqeq12d 2817 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ (𝑁‘(𝑥 𝑦)) = (𝑥𝐷𝑦)))
31 eqcom 2808 . . . . . . 7 ((𝑁‘(𝑥 𝑦)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦)))
3230, 31syl6bb 290 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
33322ralbidva 3166 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋 (𝑥(𝑁 )𝑦) = (𝑥(𝐷 ↾ (𝑋 × 𝑋))𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3420, 33bitrd 282 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3534pm5.32i 578 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
36 df-3an 1086 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))))
37 df-3an 1086 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
3835, 36, 373bitr4i 306 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = (𝐷 ↾ (𝑋 × 𝑋))) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
396, 38bitri 278 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑁‘(𝑥 𝑦))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ⟨cop 4534   × cxp 5521   ↾ cres 5525   ∘ ccom 5527   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  Basecbs 16478  distcds 16569  Grpcgrp 18098  -gcsg 18100  Metcmet 20080  MetSpcms 22928  normcnm 23186  NrmGrpcngp 23187 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193 This theorem is referenced by:  isngp4  23221  subgngp  23244
 Copyright terms: Public domain W3C validator