MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjcss Structured version   Visualization version   GIF version

Theorem pjcss 20852
Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjcss.k 𝐾 = (proj‘𝑊)
pjcss.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
pjcss (𝑊 ∈ PreHil → dom 𝐾𝐶)

Proof of Theorem pjcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
2 eqid 2819 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2819 . . . 4 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2819 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
5 simpl 485 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ PreHil)
6 eqid 2819 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 pjcss.k . . . . . . 7 𝐾 = (proj‘𝑊)
82, 6, 3, 4, 7pjdm2 20847 . . . . . 6 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))))
98simprbda 501 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊))
102, 6lssss 19700 . . . . 5 (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊))
119, 10syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊))
122, 3ocvss 20806 . . . . 5 ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (Base‘𝑊)
138simplbda 502 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))
1412, 13sseqtrrid 4018 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)))
151, 2, 3, 4, 5, 11, 14lsmcss 20828 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥𝐶)
1615ex 415 . 2 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾𝑥𝐶))
1716ssrdv 3971 1 (𝑊 ∈ PreHil → dom 𝐾𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wss 3934  dom cdm 5548  cfv 6348  (class class class)co 7148  Basecbs 16475  LSSumclsm 18751  LSubSpclss 19695  PreHilcphl 20760  ocvcocv 20796  ClSubSpccss 20797  projcpj 20836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-pj1 18754  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-rnghom 19459  df-staf 19608  df-srng 19609  df-lmod 19628  df-lss 19696  df-lmhm 19786  df-lvec 19867  df-sra 19936  df-rgmod 19937  df-phl 20762  df-ocv 20799  df-css 20800  df-pj 20839
This theorem is referenced by:  ocvpj  20853  ishil2  20855  cldcss  24036  hlhil  24038
  Copyright terms: Public domain W3C validator