| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjcss | Structured version Visualization version GIF version | ||
| Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjcss.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjcss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| pjcss | ⊢ (𝑊 ∈ PreHil → dom 𝐾 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjcss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 5 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ PreHil) | |
| 6 | eqid 2733 | . . . . . . 7 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | pjcss.k | . . . . . . 7 ⊢ 𝐾 = (proj‘𝑊) | |
| 8 | 2, 6, 3, 4, 7 | pjdm2 21650 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
| 9 | 8 | simprbda 498 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
| 10 | 2, 6 | lssss 20871 | . . . . 5 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
| 12 | 2, 3 | ocvss 21609 | . . . . 5 ⊢ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (Base‘𝑊) |
| 13 | 8 | simplbda 499 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
| 14 | 12, 13 | sseqtrrid 3974 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) |
| 15 | 1, 2, 3, 4, 5, 11, 14 | lsmcss 21631 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ 𝐶) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 → 𝑥 ∈ 𝐶)) |
| 17 | 16 | ssrdv 3936 | 1 ⊢ (𝑊 ∈ PreHil → dom 𝐾 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 LSSumclsm 19548 LSubSpclss 20866 PreHilcphl 21563 ocvcocv 21599 ClSubSpccss 21600 projcpj 21639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-ghm 19127 df-cntz 19231 df-lsm 19550 df-pj1 19551 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-rhm 20392 df-staf 20756 df-srng 20757 df-lmod 20797 df-lss 20867 df-lmhm 20958 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-phl 21565 df-ocv 21602 df-css 21603 df-pj 21642 |
| This theorem is referenced by: ocvpj 21656 ishil2 21658 cldcss 25369 hlhil 25371 |
| Copyright terms: Public domain | W3C validator |