MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjcss Structured version   Visualization version   GIF version

Theorem pjcss 21578
Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjcss.k 𝐾 = (proj‘𝑊)
pjcss.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
pjcss (𝑊 ∈ PreHil → dom 𝐾𝐶)

Proof of Theorem pjcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
2 eqid 2724 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2724 . . . 4 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2724 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
5 simpl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ PreHil)
6 eqid 2724 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 pjcss.k . . . . . . 7 𝐾 = (proj‘𝑊)
82, 6, 3, 4, 7pjdm2 21573 . . . . . 6 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))))
98simprbda 498 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊))
102, 6lssss 20772 . . . . 5 (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊))
119, 10syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊))
122, 3ocvss 21530 . . . . 5 ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (Base‘𝑊)
138simplbda 499 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))
1412, 13sseqtrrid 4027 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑥)) ⊆ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)))
151, 2, 3, 4, 5, 11, 14lsmcss 21552 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥𝐶)
1615ex 412 . 2 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾𝑥𝐶))
1716ssrdv 3980 1 (𝑊 ∈ PreHil → dom 𝐾𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3940  dom cdm 5666  cfv 6533  (class class class)co 7401  Basecbs 17142  LSSumclsm 19543  LSubSpclss 20767  PreHilcphl 21484  ocvcocv 21520  ClSubSpccss 21521  projcpj 21562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-sca 17211  df-vsca 17212  df-ip 17213  df-0g 17385  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-mhm 18702  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19039  df-ghm 19128  df-cntz 19222  df-lsm 19545  df-pj1 19546  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-oppr 20225  df-rhm 20363  df-staf 20677  df-srng 20678  df-lmod 20697  df-lss 20768  df-lmhm 20859  df-lvec 20940  df-sra 21010  df-rgmod 21011  df-phl 21486  df-ocv 21523  df-css 21524  df-pj 21565
This theorem is referenced by:  ocvpj  21579  ishil2  21581  cldcss  25290  hlhil  25292
  Copyright terms: Public domain W3C validator