![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpqf | Structured version Visualization version GIF version |
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqf | ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8003 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp2nd 8004 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
3 | mulclpi 10887 | . . . . . 6 ⊢ (((1st ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 595 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
5 | xp1st 8003 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
6 | xp2nd 8004 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
7 | mulclpi 10887 | . . . . . 6 ⊢ (((1st ‘𝑦) ∈ N ∧ (2nd ‘𝑥) ∈ N) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) | |
8 | 5, 6, 7 | syl2anr 596 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) |
9 | addclpi 10886 | . . . . 5 ⊢ ((((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N ∧ ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) | |
10 | 4, 8, 9 | syl2anc 583 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) |
11 | mulclpi 10887 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
12 | 6, 2, 11 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
13 | 10, 12 | opelxpd 5708 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N)) |
14 | 13 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) |
15 | df-plpq 10902 | . . 3 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩) | |
16 | 15 | fmpo 8050 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N)) |
17 | 14, 16 | mpbi 229 | 1 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2098 ∀wral 3055 ⟨cop 4629 × cxp 5667 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 Ncnpi 10838 +N cpli 10839 ·N cmi 10840 +pQ cplpq 10842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-oadd 8468 df-omul 8469 df-ni 10866 df-pli 10867 df-mi 10868 df-plpq 10902 |
This theorem is referenced by: addclnq 10939 addnqf 10942 addcompq 10944 adderpq 10950 distrnq 10955 |
Copyright terms: Public domain | W3C validator |