| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addpqf | Structured version Visualization version GIF version | ||
| Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addpqf | ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 7979 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
| 2 | xp2nd 7980 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
| 3 | mulclpi 10822 | . . . . . 6 ⊢ (((1st ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
| 5 | xp1st 7979 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
| 6 | xp2nd 7980 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
| 7 | mulclpi 10822 | . . . . . 6 ⊢ (((1st ‘𝑦) ∈ N ∧ (2nd ‘𝑥) ∈ N) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) | |
| 8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) |
| 9 | addclpi 10821 | . . . . 5 ⊢ ((((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N ∧ ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) | |
| 10 | 4, 8, 9 | syl2anc 584 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) |
| 11 | mulclpi 10822 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
| 12 | 6, 2, 11 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
| 13 | 10, 12 | opelxpd 5670 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
| 14 | 13 | rgen2 3175 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
| 15 | df-plpq 10837 | . . 3 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 16 | 15 | fmpo 8026 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N)) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 〈cop 4591 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Ncnpi 10773 +N cpli 10774 ·N cmi 10775 +pQ cplpq 10777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 df-ni 10801 df-pli 10802 df-mi 10803 df-plpq 10837 |
| This theorem is referenced by: addclnq 10874 addnqf 10877 addcompq 10879 adderpq 10885 distrnq 10890 |
| Copyright terms: Public domain | W3C validator |