![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpqf | Structured version Visualization version GIF version |
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqf | ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8029 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp2nd 8030 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
3 | mulclpi 10922 | . . . . . 6 ⊢ (((1st ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 594 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
5 | xp1st 8029 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
6 | xp2nd 8030 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
7 | mulclpi 10922 | . . . . . 6 ⊢ (((1st ‘𝑦) ∈ N ∧ (2nd ‘𝑥) ∈ N) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) | |
8 | 5, 6, 7 | syl2anr 595 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) |
9 | addclpi 10921 | . . . . 5 ⊢ ((((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N ∧ ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) | |
10 | 4, 8, 9 | syl2anc 582 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) |
11 | mulclpi 10922 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
12 | 6, 2, 11 | syl2an 594 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
13 | 10, 12 | opelxpd 5719 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N)) |
14 | 13 | rgen2 3193 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) |
15 | df-plpq 10937 | . . 3 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩) | |
16 | 15 | fmpo 8076 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N)) |
17 | 14, 16 | mpbi 229 | 1 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2098 ∀wral 3057 ⟨cop 4636 × cxp 5678 ⟶wf 6547 ‘cfv 6551 (class class class)co 7424 1st c1st 7995 2nd c2nd 7996 Ncnpi 10873 +N cpli 10874 ·N cmi 10875 +pQ cplpq 10877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-oadd 8495 df-omul 8496 df-ni 10901 df-pli 10902 df-mi 10903 df-plpq 10937 |
This theorem is referenced by: addclnq 10974 addnqf 10977 addcompq 10979 adderpq 10985 distrnq 10990 |
Copyright terms: Public domain | W3C validator |