MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqf Structured version   Visualization version   GIF version

Theorem addpqf 10631
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpqf +pQ :((N × N) × (N × N))⟶(N × N)

Proof of Theorem addpqf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7836 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp2nd 7837 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
3 mulclpi 10580 . . . . . 6 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
41, 2, 3syl2an 595 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
5 xp1st 7836 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
6 xp2nd 7837 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
7 mulclpi 10580 . . . . . 6 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
85, 6, 7syl2anr 596 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
9 addclpi 10579 . . . . 5 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
104, 8, 9syl2anc 583 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
11 mulclpi 10580 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
126, 2, 11syl2an 595 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
1310, 12opelxpd 5618 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1413rgen2 3126 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
15 df-plpq 10595 . . 3 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
1615fmpo 7881 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N))
1714, 16mpbi 229 1 +pQ :((N × N) × (N × N))⟶(N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wral 3063  cop 4564   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Ncnpi 10531   +N cpli 10532   ·N cmi 10533   +pQ cplpq 10535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-ni 10559  df-pli 10560  df-mi 10561  df-plpq 10595
This theorem is referenced by:  addclnq  10632  addnqf  10635  addcompq  10637  adderpq  10643  distrnq  10648
  Copyright terms: Public domain W3C validator