MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqf Structured version   Visualization version   GIF version

Theorem addpqf 10447
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpqf +pQ :((N × N) × (N × N))⟶(N × N)

Proof of Theorem addpqf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7749 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp2nd 7750 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
3 mulclpi 10396 . . . . . 6 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
41, 2, 3syl2an 599 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
5 xp1st 7749 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
6 xp2nd 7750 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
7 mulclpi 10396 . . . . . 6 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
85, 6, 7syl2anr 600 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
9 addclpi 10395 . . . . 5 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
104, 8, 9syl2anc 587 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
11 mulclpi 10396 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
126, 2, 11syl2an 599 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
1310, 12opelxpd 5564 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1413rgen2 3116 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
15 df-plpq 10411 . . 3 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
1615fmpo 7794 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N))
1714, 16mpbi 233 1 +pQ :((N × N) × (N × N))⟶(N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2114  wral 3054  cop 4523   × cxp 5524  wf 6336  cfv 6340  (class class class)co 7173  1st c1st 7715  2nd c2nd 7716  Ncnpi 10347   +N cpli 10348   ·N cmi 10349   +pQ cplpq 10351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-oadd 8138  df-omul 8139  df-ni 10375  df-pli 10376  df-mi 10377  df-plpq 10411
This theorem is referenced by:  addclnq  10448  addnqf  10451  addcompq  10453  adderpq  10459  distrnq  10464
  Copyright terms: Public domain W3C validator