| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addpqf | Structured version Visualization version GIF version | ||
| Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addpqf | ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 8000 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
| 2 | xp2nd 8001 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
| 3 | mulclpi 10846 | . . . . . 6 ⊢ (((1st ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
| 5 | xp1st 8000 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
| 6 | xp2nd 8001 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
| 7 | mulclpi 10846 | . . . . . 6 ⊢ (((1st ‘𝑦) ∈ N ∧ (2nd ‘𝑥) ∈ N) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) | |
| 8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) |
| 9 | addclpi 10845 | . . . . 5 ⊢ ((((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N ∧ ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) | |
| 10 | 4, 8, 9 | syl2anc 584 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) |
| 11 | mulclpi 10846 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
| 12 | 6, 2, 11 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
| 13 | 10, 12 | opelxpd 5677 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
| 14 | 13 | rgen2 3177 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
| 15 | df-plpq 10861 | . . 3 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 16 | 15 | fmpo 8047 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N)) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 〈cop 4595 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Ncnpi 10797 +N cpli 10798 ·N cmi 10799 +pQ cplpq 10801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-omul 8439 df-ni 10825 df-pli 10826 df-mi 10827 df-plpq 10861 |
| This theorem is referenced by: addclnq 10898 addnqf 10901 addcompq 10903 adderpq 10909 distrnq 10914 |
| Copyright terms: Public domain | W3C validator |