Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addpqf | Structured version Visualization version GIF version |
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqf | ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 7749 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp2nd 7750 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
3 | mulclpi 10396 | . . . . . 6 ⊢ (((1st ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 599 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
5 | xp1st 7749 | . . . . . 6 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
6 | xp2nd 7750 | . . . . . 6 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
7 | mulclpi 10396 | . . . . . 6 ⊢ (((1st ‘𝑦) ∈ N ∧ (2nd ‘𝑥) ∈ N) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) | |
8 | 5, 6, 7 | syl2anr 600 | . . . . 5 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) |
9 | addclpi 10395 | . . . . 5 ⊢ ((((1st ‘𝑥) ·N (2nd ‘𝑦)) ∈ N ∧ ((1st ‘𝑦) ·N (2nd ‘𝑥)) ∈ N) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) | |
10 | 4, 8, 9 | syl2anc 587 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))) ∈ N) |
11 | mulclpi 10396 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
12 | 6, 2, 11 | syl2an 599 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
13 | 10, 12 | opelxpd 5564 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
14 | 13 | rgen2 3116 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
15 | df-plpq 10411 | . . 3 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
16 | 15 | fmpo 7794 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N)) |
17 | 14, 16 | mpbi 233 | 1 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∈ wcel 2114 ∀wral 3054 〈cop 4523 × cxp 5524 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 1st c1st 7715 2nd c2nd 7716 Ncnpi 10347 +N cpli 10348 ·N cmi 10349 +pQ cplpq 10351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-oadd 8138 df-omul 8139 df-ni 10375 df-pli 10376 df-mi 10377 df-plpq 10411 |
This theorem is referenced by: addclnq 10448 addnqf 10451 addcompq 10453 adderpq 10459 distrnq 10464 |
Copyright terms: Public domain | W3C validator |