MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfcl Structured version   Visualization version   GIF version

Theorem ovolfcl 24070
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfcl ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))

Proof of Theorem ovolfcl
StepHypRef Expression
1 ffvelrn 6852 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
21elin2d 4179 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
3 1st2nd2 7731 . . . 4 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
42, 3syl 17 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
54, 1eqeltrrd 2917 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
6 ancom 463 . . 3 (((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
7 elin 4172 . . . 4 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)))
8 df-br 5070 . . . . . 6 ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ↔ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ )
98bicomi 226 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)))
10 opelxp 5594 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ))
119, 10anbi12i 628 . . . 4 ((⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
127, 11bitri 277 . . 3 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
13 df-3an 1085 . . 3 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
146, 12, 133bitr4i 305 . 2 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
155, 14sylib 220 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cin 3938  cop 4576   class class class wbr 5069   × cxp 5556  wf 6354  cfv 6358  1st c1st 7690  2nd c2nd 7691  cr 10539  cle 10679  cn 11641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-1st 7692  df-2nd 7693
This theorem is referenced by:  ovolfioo  24071  ovolficc  24072  ovolfsval  24074  ovolfsf  24075  ovollb2lem  24092  ovolshftlem1  24113  ovolscalem1  24117  ioombl1lem1  24162  ioombl1lem3  24164  ioombl1lem4  24165  ovolfs2  24175  uniiccdif  24182  uniioovol  24183  uniioombllem2a  24186  uniioombllem2  24187  uniioombllem3a  24188  uniioombllem3  24189  uniioombllem4  24190  uniioombllem6  24192  ovolval3  42936
  Copyright terms: Public domain W3C validator