MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfcl Structured version   Visualization version   GIF version

Theorem ovolfcl 25383
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfcl ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))

Proof of Theorem ovolfcl
StepHypRef Expression
1 ffvelcdm 7019 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
21elin2d 4158 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
3 1st2nd2 7970 . . . 4 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
42, 3syl 17 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
54, 1eqeltrrd 2829 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
6 ancom 460 . . 3 (((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
7 elin 3921 . . . 4 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)))
8 df-br 5096 . . . . . 6 ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ↔ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ )
98bicomi 224 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)))
10 opelxp 5659 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ))
119, 10anbi12i 628 . . . 4 ((⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
127, 11bitri 275 . . 3 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
13 df-3an 1088 . . 3 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
146, 12, 133bitr4i 303 . 2 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
155, 14sylib 218 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  cop 4585   class class class wbr 5095   × cxp 5621  wf 6482  cfv 6486  1st c1st 7929  2nd c2nd 7930  cr 11027  cle 11169  cn 12146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1st 7931  df-2nd 7932
This theorem is referenced by:  ovolfioo  25384  ovolficc  25385  ovolfsval  25387  ovolfsf  25388  ovollb2lem  25405  ovolshftlem1  25426  ovolscalem1  25430  ioombl1lem1  25475  ioombl1lem3  25477  ioombl1lem4  25478  ovolfs2  25488  uniiccdif  25495  uniioovol  25496  uniioombllem2a  25499  uniioombllem2  25500  uniioombllem3a  25501  uniioombllem3  25502  uniioombllem4  25503  uniioombllem6  25505  ovolval3  46632
  Copyright terms: Public domain W3C validator