![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version |
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7083 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | elin2d 4199 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
3 | 1st2nd2 8016 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩) |
5 | 4, 1 | eqeltrrd 2834 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) |
6 | ancom 461 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
7 | elin 3964 | . . . 4 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ))) | |
8 | df-br 5149 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
10 | opelxp 5712 | . . . . 5 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
11 | 9, 10 | anbi12i 627 | . . . 4 ⊢ ((⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
12 | 7, 11 | bitri 274 | . . 3 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
13 | df-3an 1089 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
14 | 6, 12, 13 | 3bitr4i 302 | . 2 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
15 | 5, 14 | sylib 217 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∩ cin 3947 ⟨cop 4634 class class class wbr 5148 × cxp 5674 ⟶wf 6539 ‘cfv 6543 1st c1st 7975 2nd c2nd 7976 ℝcr 11111 ≤ cle 11251 ℕcn 12214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: ovolfioo 24991 ovolficc 24992 ovolfsval 24994 ovolfsf 24995 ovollb2lem 25012 ovolshftlem1 25033 ovolscalem1 25037 ioombl1lem1 25082 ioombl1lem3 25084 ioombl1lem4 25085 ovolfs2 25095 uniiccdif 25102 uniioovol 25103 uniioombllem2a 25106 uniioombllem2 25107 uniioombllem3a 25108 uniioombllem3 25109 uniioombllem4 25110 uniioombllem6 25112 ovolval3 45442 |
Copyright terms: Public domain | W3C validator |