MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfcl Structured version   Visualization version   GIF version

Theorem ovolfcl 24363
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfcl ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))

Proof of Theorem ovolfcl
StepHypRef Expression
1 ffvelrn 6902 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
21elin2d 4113 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
3 1st2nd2 7800 . . . 4 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
42, 3syl 17 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
54, 1eqeltrrd 2839 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
6 ancom 464 . . 3 (((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
7 elin 3882 . . . 4 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)))
8 df-br 5054 . . . . . 6 ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ↔ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ )
98bicomi 227 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)))
10 opelxp 5587 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ))
119, 10anbi12i 630 . . . 4 ((⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
127, 11bitri 278 . . 3 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
13 df-3an 1091 . . 3 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
146, 12, 133bitr4i 306 . 2 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
155, 14sylib 221 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cin 3865  cop 4547   class class class wbr 5053   × cxp 5549  wf 6376  cfv 6380  1st c1st 7759  2nd c2nd 7760  cr 10728  cle 10868  cn 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-1st 7761  df-2nd 7762
This theorem is referenced by:  ovolfioo  24364  ovolficc  24365  ovolfsval  24367  ovolfsf  24368  ovollb2lem  24385  ovolshftlem1  24406  ovolscalem1  24410  ioombl1lem1  24455  ioombl1lem3  24457  ioombl1lem4  24458  ovolfs2  24468  uniiccdif  24475  uniioovol  24476  uniioombllem2a  24479  uniioombllem2  24480  uniioombllem3a  24481  uniioombllem3  24482  uniioombllem4  24483  uniioombllem6  24485  ovolval3  43860
  Copyright terms: Public domain W3C validator