| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version | ||
| Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7023 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 2 | 1 | elin2d 4154 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
| 3 | 1st2nd2 7969 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
| 5 | 4, 1 | eqeltrrd 2834 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
| 6 | ancom 460 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 7 | elin 3914 | . . . 4 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ))) | |
| 8 | df-br 5096 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ) | |
| 9 | 8 | bicomi 224 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
| 10 | opelxp 5657 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
| 11 | 9, 10 | anbi12i 628 | . . . 4 ⊢ ((〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 12 | 7, 11 | bitri 275 | . . 3 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 13 | df-3an 1088 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| 15 | 5, 14 | sylib 218 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 〈cop 4583 class class class wbr 5095 × cxp 5619 ⟶wf 6485 ‘cfv 6489 1st c1st 7928 2nd c2nd 7929 ℝcr 11016 ≤ cle 11158 ℕcn 12136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-1st 7930 df-2nd 7931 |
| This theorem is referenced by: ovolfioo 25415 ovolficc 25416 ovolfsval 25418 ovolfsf 25419 ovollb2lem 25436 ovolshftlem1 25457 ovolscalem1 25461 ioombl1lem1 25506 ioombl1lem3 25508 ioombl1lem4 25509 ovolfs2 25519 uniiccdif 25526 uniioovol 25527 uniioombllem2a 25530 uniioombllem2 25531 uniioombllem3a 25532 uniioombllem3 25533 uniioombllem4 25534 uniioombllem6 25536 ovolval3 46807 |
| Copyright terms: Public domain | W3C validator |