| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version | ||
| Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7035 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 2 | 1 | elin2d 4164 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
| 3 | 1st2nd2 7986 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
| 5 | 4, 1 | eqeltrrd 2829 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
| 6 | ancom 460 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 7 | elin 3927 | . . . 4 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ))) | |
| 8 | df-br 5103 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ) | |
| 9 | 8 | bicomi 224 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
| 10 | opelxp 5667 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
| 11 | 9, 10 | anbi12i 628 | . . . 4 ⊢ ((〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 12 | 7, 11 | bitri 275 | . . 3 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 13 | df-3an 1088 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| 15 | 5, 14 | sylib 218 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 〈cop 4591 class class class wbr 5102 × cxp 5629 ⟶wf 6495 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 ℝcr 11043 ≤ cle 11185 ℕcn 12162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: ovolfioo 25344 ovolficc 25345 ovolfsval 25347 ovolfsf 25348 ovollb2lem 25365 ovolshftlem1 25386 ovolscalem1 25390 ioombl1lem1 25435 ioombl1lem3 25437 ioombl1lem4 25438 ovolfs2 25448 uniiccdif 25455 uniioovol 25456 uniioombllem2a 25459 uniioombllem2 25460 uniioombllem3a 25461 uniioombllem3 25462 uniioombllem4 25463 uniioombllem6 25465 ovolval3 46618 |
| Copyright terms: Public domain | W3C validator |