![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version |
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7079 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | elin2d 4198 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
3 | 1st2nd2 8009 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
5 | 4, 1 | eqeltrrd 2835 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
6 | ancom 462 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
7 | elin 3963 | . . . 4 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ))) | |
8 | df-br 5148 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
10 | opelxp 5711 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
11 | 9, 10 | anbi12i 628 | . . . 4 ⊢ ((〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
12 | 7, 11 | bitri 275 | . . 3 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
13 | df-3an 1090 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
15 | 5, 14 | sylib 217 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3946 〈cop 4633 class class class wbr 5147 × cxp 5673 ⟶wf 6536 ‘cfv 6540 1st c1st 7968 2nd c2nd 7969 ℝcr 11105 ≤ cle 11245 ℕcn 12208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-1st 7970 df-2nd 7971 |
This theorem is referenced by: ovolfioo 24966 ovolficc 24967 ovolfsval 24969 ovolfsf 24970 ovollb2lem 24987 ovolshftlem1 25008 ovolscalem1 25012 ioombl1lem1 25057 ioombl1lem3 25059 ioombl1lem4 25060 ovolfs2 25070 uniiccdif 25077 uniioovol 25078 uniioombllem2a 25081 uniioombllem2 25082 uniioombllem3a 25083 uniioombllem3 25084 uniioombllem4 25085 uniioombllem6 25087 ovolval3 45298 |
Copyright terms: Public domain | W3C validator |