Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version |
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrn 6959 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | elin2d 4133 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
3 | 1st2nd2 7870 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
5 | 4, 1 | eqeltrrd 2840 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
6 | ancom 461 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
7 | elin 3903 | . . . 4 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ))) | |
8 | df-br 5075 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
10 | opelxp 5625 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
11 | 9, 10 | anbi12i 627 | . . . 4 ⊢ ((〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
12 | 7, 11 | bitri 274 | . . 3 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
13 | df-3an 1088 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
15 | 5, 14 | sylib 217 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 〈cop 4567 class class class wbr 5074 × cxp 5587 ⟶wf 6429 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 ℝcr 10870 ≤ cle 11010 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: ovolfioo 24631 ovolficc 24632 ovolfsval 24634 ovolfsf 24635 ovollb2lem 24652 ovolshftlem1 24673 ovolscalem1 24677 ioombl1lem1 24722 ioombl1lem3 24724 ioombl1lem4 24725 ovolfs2 24735 uniiccdif 24742 uniioovol 24743 uniioombllem2a 24746 uniioombllem2 24747 uniioombllem3a 24748 uniioombllem3 24749 uniioombllem4 24750 uniioombllem6 24752 ovolval3 44185 |
Copyright terms: Public domain | W3C validator |