MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfcl Structured version   Visualization version   GIF version

Theorem ovolfcl 25414
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfcl ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))

Proof of Theorem ovolfcl
StepHypRef Expression
1 ffvelcdm 7023 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
21elin2d 4154 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
3 1st2nd2 7969 . . . 4 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
42, 3syl 17 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
54, 1eqeltrrd 2834 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
6 ancom 460 . . 3 (((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
7 elin 3914 . . . 4 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)))
8 df-br 5096 . . . . . 6 ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ↔ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ )
98bicomi 224 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)))
10 opelxp 5657 . . . . 5 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ))
119, 10anbi12i 628 . . . 4 ((⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
127, 11bitri 275 . . 3 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁)) ∧ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ)))
13 df-3an 1088 . . 3 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) ↔ (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
146, 12, 133bitr4i 303 . 2 (⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
155, 14sylib 218 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  cop 4583   class class class wbr 5095   × cxp 5619  wf 6485  cfv 6489  1st c1st 7928  2nd c2nd 7929  cr 11016  cle 11158  cn 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-1st 7930  df-2nd 7931
This theorem is referenced by:  ovolfioo  25415  ovolficc  25416  ovolfsval  25418  ovolfsf  25419  ovollb2lem  25436  ovolshftlem1  25457  ovolscalem1  25461  ioombl1lem1  25506  ioombl1lem3  25508  ioombl1lem4  25509  ovolfs2  25519  uniiccdif  25526  uniioovol  25527  uniioombllem2a  25530  uniioombllem2  25531  uniioombllem3a  25532  uniioombllem3  25533  uniioombllem4  25534  uniioombllem6  25536  ovolval3  46807
  Copyright terms: Public domain W3C validator