![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version |
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7084 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | elin2d 4200 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
3 | 1st2nd2 8014 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩) |
5 | 4, 1 | eqeltrrd 2835 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) |
6 | ancom 462 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
7 | elin 3965 | . . . 4 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ))) | |
8 | df-br 5150 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ) | |
9 | 8 | bicomi 223 | . . . . 5 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
10 | opelxp 5713 | . . . . 5 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
11 | 9, 10 | anbi12i 628 | . . . 4 ⊢ ((⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ≤ ∧ ⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
12 | 7, 11 | bitri 275 | . . 3 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
13 | df-3an 1090 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (⟨(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
15 | 5, 14 | sylib 217 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3948 ⟨cop 4635 class class class wbr 5149 × cxp 5675 ⟶wf 6540 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 ℝcr 11109 ≤ cle 11249 ℕcn 12212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: ovolfioo 24984 ovolficc 24985 ovolfsval 24987 ovolfsf 24988 ovollb2lem 25005 ovolshftlem1 25026 ovolscalem1 25030 ioombl1lem1 25075 ioombl1lem3 25077 ioombl1lem4 25078 ovolfs2 25088 uniiccdif 25095 uniioovol 25096 uniioombllem2a 25099 uniioombllem2 25100 uniioombllem3a 25101 uniioombllem3 25102 uniioombllem4 25103 uniioombllem6 25105 ovolval3 45363 |
Copyright terms: Public domain | W3C validator |