| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfcl | Structured version Visualization version GIF version | ||
| Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolfcl | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7071 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 2 | 1 | elin2d 4180 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
| 3 | 1st2nd2 8027 | . . . 4 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
| 5 | 4, 1 | eqeltrrd 2835 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ))) |
| 6 | ancom 460 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 7 | elin 3942 | . . . 4 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ))) | |
| 8 | df-br 5120 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ↔ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ) | |
| 9 | 8 | bicomi 224 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ↔ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) |
| 10 | opelxp 5690 | . . . . 5 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ)) | |
| 11 | 9, 10 | anbi12i 628 | . . . 4 ⊢ ((〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ≤ ∧ 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 12 | 7, 11 | bitri 275 | . . 3 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)) ∧ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ))) |
| 13 | df-3an 1088 | . . 3 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) ↔ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ) ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 14 | 6, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| 15 | 5, 14 | sylib 218 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 〈cop 4607 class class class wbr 5119 × cxp 5652 ⟶wf 6527 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 ℝcr 11128 ≤ cle 11270 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: ovolfioo 25420 ovolficc 25421 ovolfsval 25423 ovolfsf 25424 ovollb2lem 25441 ovolshftlem1 25462 ovolscalem1 25466 ioombl1lem1 25511 ioombl1lem3 25513 ioombl1lem4 25514 ovolfs2 25524 uniiccdif 25531 uniioovol 25532 uniioombllem2a 25535 uniioombllem2 25536 uniioombllem3a 25537 uniioombllem3 25538 uniioombllem4 25539 uniioombllem6 25541 ovolval3 46676 |
| Copyright terms: Public domain | W3C validator |