Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Structured version   Visualization version   GIF version

Theorem ovollb2lem 24095
 Description: Lemma for ovollb2 24096. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovollb2.2 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
ovollb2.3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovollb2.4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovollb2.5 (𝜑𝐴 ran ([,] ∘ 𝐹))
ovollb2.6 (𝜑𝐵 ∈ ℝ+)
ovollb2.7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Assertion
Ref Expression
ovollb2lem (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝐵,𝑛   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovollb2lem
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4 (𝜑𝐴 ran ([,] ∘ 𝐹))
2 ovollb2.4 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolficcss 24076 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
42, 3syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
51, 4sstrd 3928 . . 3 (𝜑𝐴 ⊆ ℝ)
6 ovolcl 24085 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
75, 6syl 17 . 2 (𝜑 → (vol*‘𝐴) ∈ ℝ*)
8 ovolfcl 24073 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
92, 8sylan 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
109simp1d 1139 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
11 ovollb2.6 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ+)
1211rphalfcld 12435 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 2) ∈ ℝ+)
1312adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
14 2nn 11702 . . . . . . . . . . . . . . 15 2 ∈ ℕ
15 nnnn0 11896 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 nnexpcl 13442 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1814, 16, 17sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
1918nnrpd 12421 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
2013, 19rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ+)
2120rpred 12423 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ)
2210, 21resubcld 11061 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
239simp2d 1140 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2423, 21readdcld 10663 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
2510, 20ltsubrpd 12455 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
269simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2723, 20ltaddrpd 12456 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2810, 23, 24, 26, 27lelttrd 10791 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2922, 10, 24, 25, 28lttrd 10794 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
3022, 24, 29ltled 10781 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
31 df-br 5034 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3230, 31sylib 221 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3322, 24opelxpd 5561 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3432, 33elind 4124 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
35 ovollb2.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
3634, 35fmptd 6859 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 eqid 2801 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
38 ovollb2.3 . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
3937, 38ovolsf 24079 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
4036, 39syl 17 . . . . 5 (𝜑𝑇:ℕ⟶(0[,)+∞))
4140frnd 6498 . . . 4 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
42 icossxr 12814 . . . 4 (0[,)+∞) ⊆ ℝ*
4341, 42sstrdi 3930 . . 3 (𝜑 → ran 𝑇 ⊆ ℝ*)
44 supxrcl 12700 . . 3 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
46 ovollb2.7 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4711rpred 12423 . . . 4 (𝜑𝐵 ∈ ℝ)
4846, 47readdcld 10663 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ)
4948rexrd 10684 . 2 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
50 2fveq3 6654 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (1st ‘(𝐹𝑛)) = (1st ‘(𝐹𝑚)))
51 oveq2 7147 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251oveq2d 7155 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚)))
5350, 52oveq12d 7157 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
54 2fveq3 6654 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐹𝑚)))
5554, 52oveq12d 7157 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
5653, 55opeq12d 4776 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
57 opex 5324 . . . . . . . . . . . . . . 15 ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩ ∈ V
5856, 35, 57fvmpt 6749 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
5958adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6059fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
61 ovex 7172 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V
62 ovex 7172 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V
6361, 62op1st 7683 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))
6460, 63eqtrdi 2852 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
65 ovolfcl 24073 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
662, 65sylan 583 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
6766simp1d 1139 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
6812adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
69 nnnn0 11896 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7069adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
71 nnexpcl 13442 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
7214, 70, 71sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℕ)
7372nnrpd 12421 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ+)
7468, 73rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℝ+)
7567, 74ltsubrpd 12455 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹𝑚)))
7664, 75eqbrtrd 5055 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
7776adantlr 714 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
78 ovolfcl 24073 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
7936, 78sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8079simp1d 1139 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8180adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8267adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
835sselda 3918 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
8483adantr 484 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ)
85 ltletr 10725 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8681, 82, 84, 85syl3anc 1368 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8777, 86mpand 694 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ≤ 𝑧 → (1st ‘(𝐺𝑚)) < 𝑧))
8866simp2d 1140 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
8988, 74ltaddrpd 12456 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9059fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
9161, 62op2nd 7684 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))
9290, 91eqtrdi 2852 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9389, 92breqtrrd 5061 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9493adantlr 714 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9588adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9679simp2d 1140 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
9796adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
98 lelttr 10724 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
9984, 95, 97, 98syl3anc 1368 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10094, 99mpan2d 693 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹𝑚)) → 𝑧 < (2nd ‘(𝐺𝑚))))
10187, 100anim12d 611 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
102101reximdva 3236 . . . . . 6 ((𝜑𝑧𝐴) → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
103102ralimdva 3147 . . . . 5 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
104 ovolficc 24075 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
1055, 2, 104syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
106 ovolfioo 24074 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1075, 36, 106syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
108103, 105, 1073imtr4d 297 . . . 4 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐺)))
1091, 108mpd 15 . . 3 (𝜑𝐴 ran ((,) ∘ 𝐺))
11038ovollb 24086 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐺)) → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11136, 109, 110syl2anc 587 . 2 (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11238fveq1i 6650 . . . . . . 7 (𝑇𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘)
113 fzfid 13340 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
114 rge0ssre 12838 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
115 eqid 2801 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
116115ovolfsf 24078 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
1172, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
118117adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
119 elfznn 12935 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
120 ffvelrn 6830 . . . . . . . . . . . 12 ((((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
121118, 119, 120syl2an 598 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
122114, 121sseldi 3916 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℝ)
123122recnd 10662 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℂ)
12411adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℝ+)
125124, 73rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℝ+)
126125rpcnd 12425 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ)
127119, 126sylan2 595 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
128127adantlr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
129113, 123, 128fsumadd 15091 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))))
13037ovolfsval 24077 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13136, 130sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13288recnd 10662 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℂ)
13374rpcnd 12425 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ)
13467recnd 10662 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℂ)
135134, 133subcld 10990 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ)
136132, 133, 135addsubassd 11010 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
13792, 64oveq12d 7157 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))
138132, 134, 126subadd23d 11012 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
139115ovolfsval 24077 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
1402, 139sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
141140oveq1d 7154 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))))
142133, 134, 133subsub3d 11020 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))))
14368rpcnd 12425 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ)
14472nncnd 11645 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
14572nnne0d 11679 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0)
146143, 143, 144, 145divdird 11447 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
147124rpcnd 12425 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℂ)
1481472halvesd 11875 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵)
149148oveq1d 7154 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚)))
150146, 149eqtr3d 2838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚)))
151150oveq1d 7154 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
152142, 151eqtrd 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
153152oveq2d 7155 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
154138, 141, 1533eqtr4d 2846 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
155136, 137, 1543eqtr4d 2846 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
156131, 155eqtrd 2836 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
157119, 156sylan2 595 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
158157adantlr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
159 simpr 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
160 nnuz 12273 . . . . . . . . . 10 ℕ = (ℤ‘1)
161159, 160eleqtrdi 2903 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
162123, 128addcld 10653 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ)
163158, 161, 162fsumser 15082 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
164 eqidd 2802 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚))
165164, 161, 123fsumser 15082 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
166 ovollb2.1 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
167166fveq1i 6650 . . . . . . . . . 10 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
168165, 167eqtr4di 2854 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆𝑘))
16911adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ+)
170169rpcnd 12425 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
171 geo2sum 15224 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
172159, 170, 171syl2anc 587 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
173168, 172oveq12d 7157 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
174129, 163, 1733eqtr3d 2844 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
175112, 174syl5eq 2848 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
176115, 166ovolsf 24079 . . . . . . . . . 10 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1772, 176syl 17 . . . . . . . . 9 (𝜑𝑆:ℕ⟶(0[,)+∞))
178177ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ (0[,)+∞))
179114, 178sseldi 3916 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
180169rpred 12423 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
181 nnnn0 11896 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
182181adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
183 nnexpcl 13442 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
18414, 182, 183sylancr 590 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℕ)
185184nnrpd 12421 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℝ+)
186169, 185rpdivcld 12440 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ+)
187186rpred 12423 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ)
188180, 187resubcld 11061 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ)
18946adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
190177frnd 6498 . . . . . . . . . 10 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
191190, 42sstrdi 3930 . . . . . . . . 9 (𝜑 → ran 𝑆 ⊆ ℝ*)
192191adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
193177ffnd 6492 . . . . . . . . 9 (𝜑𝑆 Fn ℕ)
194 fnfvelrn 6829 . . . . . . . . 9 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
195193, 194sylan 583 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
196 supxrub 12709 . . . . . . . 8 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
197192, 195, 196syl2anc 587 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
198180, 186ltsubrpd 12455 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵)
199188, 180, 198ltled 10781 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵)
200179, 188, 189, 180, 197, 199le2addd 11252 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
201175, 200eqbrtrd 5055 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
202201ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
203 ffn 6491 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
204 breq1 5036 . . . . . 6 (𝑦 = (𝑇𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
205204ralrn 6835 . . . . 5 (𝑇 Fn ℕ → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20640, 203, 2053syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
207202, 206mpbird 260 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
208 supxrleub 12711 . . . 4 ((ran 𝑇 ⊆ ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20943, 49, 208syl2anc 587 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
210207, 209mpbird 260 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
2117, 45, 49, 111, 210xrletrd 12547 1 (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   ∩ cin 3883   ⊆ wss 3884  ⟨cop 4534  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521  ran crn 5524   ∘ ccom 5527   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  supcsup 8892  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533  +∞cpnf 10665  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  ℕcn 11629  2c2 11684  ℕ0cn0 11889  ℤ≥cuz 12235  ℝ+crp 12381  (,)cioo 12730  [,)cico 12732  [,]cicc 12733  ...cfz 12889  seqcseq 13368  ↑cexp 13429  abscabs 14588  Σcsu 15037  vol*covol 24069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-ovol 24071 This theorem is referenced by:  ovollb2  24096
 Copyright terms: Public domain W3C validator