Step | Hyp | Ref
| Expression |
1 | | ovollb2.5 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
([,] ∘ 𝐹)) |
2 | | ovollb2.4 |
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
3 | | ovolficcss 23684 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ ran ([,] ∘
𝐹) ⊆
ℝ) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
5 | 1, 4 | sstrd 3831 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
6 | | ovolcl 23693 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
7 | 5, 6 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ*) |
8 | | ovolfcl 23681 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
9 | 2, 8 | sylan 575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
10 | 9 | simp1d 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
11 | | ovollb2.6 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
12 | 11 | rphalfcld 12198 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 / 2) ∈
ℝ+) |
13 | 12 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 / 2) ∈
ℝ+) |
14 | | 2nn 11453 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
15 | | nnnn0 11655 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
16 | 15 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
17 | | nnexpcl 13196 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
18 | 14, 16, 17 | sylancr 581 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) |
19 | 18 | nnrpd 12184 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) |
20 | 13, 19 | rpdivcld 12203 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈
ℝ+) |
21 | 20 | rpred 12186 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ) |
22 | 10, 21 | resubcld 10806 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) |
23 | 9 | simp2d 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
24 | 23, 21 | readdcld 10408 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) |
25 | 10, 20 | ltsubrpd 12218 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹‘𝑛))) |
26 | 9 | simp3d 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
27 | 23, 20 | ltaddrpd 12219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) < ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
28 | 10, 23, 24, 26, 27 | lelttrd 10536 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) < ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
29 | 22, 10, 24, 25, 28 | lttrd 10539 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
30 | 22, 24, 29 | ltled 10526 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
31 | | df-br 4889 |
. . . . . . . . 9
⊢
(((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ 〈((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ≤ ) |
32 | 30, 31 | sylib 210 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ≤ ) |
33 | | opelxpi 5394 |
. . . . . . . . 9
⊢
((((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ ∧ ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ (ℝ ×
ℝ)) |
34 | 22, 24, 33 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ (ℝ ×
ℝ)) |
35 | 32, 34 | elind 4021 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ( ≤ ∩ (ℝ
× ℝ))) |
36 | | ovollb2.2 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉) |
37 | 35, 36 | fmptd 6650 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
38 | | eqid 2778 |
. . . . . . 7
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
39 | | ovollb2.3 |
. . . . . . 7
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
40 | 38, 39 | ovolsf 23687 |
. . . . . 6
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
41 | 37, 40 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
42 | 41 | frnd 6300 |
. . . 4
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
43 | | icossxr 12575 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ* |
44 | 42, 43 | syl6ss 3833 |
. . 3
⊢ (𝜑 → ran 𝑇 ⊆
ℝ*) |
45 | | supxrcl 12462 |
. . 3
⊢ (ran
𝑇 ⊆
ℝ* → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
46 | 44, 45 | syl 17 |
. 2
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
47 | | ovollb2.7 |
. . . 4
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
48 | 11 | rpred 12186 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
49 | 47, 48 | readdcld 10408 |
. . 3
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈
ℝ) |
50 | 49 | rexrd 10428 |
. 2
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈
ℝ*) |
51 | | 2fveq3 6453 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (1st ‘(𝐹‘𝑛)) = (1st ‘(𝐹‘𝑚))) |
52 | | oveq2 6932 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚)) |
53 | 52 | oveq2d 6940 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚))) |
54 | 51, 53 | oveq12d 6942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) |
55 | | 2fveq3 6453 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (2nd ‘(𝐹‘𝑛)) = (2nd ‘(𝐹‘𝑚))) |
56 | 55, 53 | oveq12d 6942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
57 | 54, 56 | opeq12d 4646 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → 〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 = 〈((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
58 | | opex 5166 |
. . . . . . . . . . . . . . 15
⊢
〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉 ∈ V |
59 | 57, 36, 58 | fvmpt 6544 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → (𝐺‘𝑚) = 〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
60 | 59 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) = 〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
61 | 60 | fveq2d 6452 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) = (1st
‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉)) |
62 | | ovex 6956 |
. . . . . . . . . . . . 13
⊢
((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V |
63 | | ovex 6956 |
. . . . . . . . . . . . 13
⊢
((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V |
64 | 62, 63 | op1st 7455 |
. . . . . . . . . . . 12
⊢
(1st ‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) = ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) |
65 | 61, 64 | syl6eq 2830 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) = ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) |
66 | | ovolfcl 23681 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ≤ (2nd
‘(𝐹‘𝑚)))) |
67 | 2, 66 | sylan 575 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ≤ (2nd
‘(𝐹‘𝑚)))) |
68 | 67 | simp1d 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℝ) |
69 | 12 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / 2) ∈
ℝ+) |
70 | | nnnn0 11655 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
71 | 70 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0) |
72 | | nnexpcl 13196 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
73 | 14, 71, 72 | sylancr 581 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℕ) |
74 | 73 | nnrpd 12184 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℝ+) |
75 | 69, 74 | rpdivcld 12203 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈
ℝ+) |
76 | 68, 75 | ltsubrpd 12218 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹‘𝑚))) |
77 | 65, 76 | eqbrtrd 4910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚))) |
78 | 77 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚))) |
79 | | ovolfcl 23681 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐺‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐺‘𝑚)) ≤ (2nd
‘(𝐺‘𝑚)))) |
80 | 37, 79 | sylan 575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐺‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐺‘𝑚)) ≤ (2nd
‘(𝐺‘𝑚)))) |
81 | 80 | simp1d 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) ∈
ℝ) |
82 | 81 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) ∈
ℝ) |
83 | 68 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℝ) |
84 | 5 | sselda 3821 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
85 | 84 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ) |
86 | | ltletr 10470 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(((1st ‘(𝐺‘𝑚)) < (1st ‘(𝐹‘𝑚)) ∧ (1st ‘(𝐹‘𝑚)) ≤ 𝑧) → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
87 | 82, 83, 85, 86 | syl3anc 1439 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚)) ∧ (1st
‘(𝐹‘𝑚)) ≤ 𝑧) → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
88 | 78, 87 | mpand 685 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
89 | 67 | simp2d 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℝ) |
90 | 89, 75 | ltaddrpd 12219 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < ((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
91 | 60 | fveq2d 6452 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) = (2nd
‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉)) |
92 | 62, 63 | op2nd 7456 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) |
93 | 91, 92 | syl6eq 2830 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) = ((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
94 | 90, 93 | breqtrrd 4916 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) |
95 | 94 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) |
96 | 89 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℝ) |
97 | 80 | simp2d 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) ∈
ℝ) |
98 | 97 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) ∈
ℝ) |
99 | | lelttr 10469 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (2nd
‘(𝐺‘𝑚)) ∈ ℝ) →
((𝑧 ≤ (2nd
‘(𝐹‘𝑚)) ∧ (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
100 | 85, 96, 98, 99 | syl3anc 1439 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹‘𝑚)) ∧ (2nd ‘(𝐹‘𝑚)) < (2nd ‘(𝐺‘𝑚))) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
101 | 95, 100 | mpan2d 684 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹‘𝑚)) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
102 | 88, 101 | anim12d 602 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
103 | 102 | reximdva 3198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
104 | 103 | ralimdva 3144 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
105 | | ovolficc 23683 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))))) |
106 | 5, 2, 105 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))))) |
107 | | ovolfioo 23682 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
108 | 5, 37, 107 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
109 | 104, 106,
108 | 3imtr4d 286 |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) →
𝐴 ⊆ ∪ ran ((,) ∘ 𝐺))) |
110 | 1, 109 | mpd 15 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐺)) |
111 | 39 | ovollb 23694 |
. . 3
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝐺)) →
(vol*‘𝐴) ≤ sup(ran
𝑇, ℝ*,
< )) |
112 | 37, 110, 111 | syl2anc 579 |
. 2
⊢ (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, <
)) |
113 | 39 | fveq1i 6449 |
. . . . . . 7
⊢ (𝑇‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) |
114 | | fzfid 13096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
115 | | rge0ssre 12599 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
116 | | eqid 2778 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
117 | 116 | ovolfsf 23686 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
118 | 2, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
119 | 118 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs ∘ −
) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
120 | | elfznn 12692 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ) |
121 | | ffvelrn 6623 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs
∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞)) |
122 | 119, 120,
121 | syl2an 589 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ (0[,)+∞)) |
123 | 115, 122 | sseldi 3819 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ ℝ) |
124 | 123 | recnd 10407 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ ℂ) |
125 | 11 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐵 ∈
ℝ+) |
126 | 125, 74 | rpdivcld 12203 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈
ℝ+) |
127 | 126 | rpcnd 12188 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
128 | 120, 127 | sylan2 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
129 | 128 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
130 | 114, 124,
129 | fsumadd 14886 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)))) |
131 | 38 | ovolfsval 23685 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺‘𝑚)) − (1st ‘(𝐺‘𝑚)))) |
132 | 37, 131 | sylan 575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺‘𝑚)) − (1st ‘(𝐺‘𝑚)))) |
133 | 89 | recnd 10407 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℂ) |
134 | 75 | rpcnd 12188 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ) |
135 | 68 | recnd 10407 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℂ) |
136 | 135, 134 | subcld 10736 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ) |
137 | 133, 134,
136 | addsubassd 10756 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))) |
138 | 93, 65 | oveq12d 6942 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐺‘𝑚)) − (1st
‘(𝐺‘𝑚))) = (((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) |
139 | 133, 135,
127 | subadd23d 10758 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2nd
‘(𝐹‘𝑚)) − (1st
‘(𝐹‘𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚))))) |
140 | 116 | ovolfsval 23685 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚)))) |
141 | 2, 140 | sylan 575 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚)))) |
142 | 141 | oveq1d 6939 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚))) + (𝐵 / (2↑𝑚)))) |
143 | 134, 135,
134 | subsub3d 10766 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹‘𝑚)))) |
144 | 69 | rpcnd 12188 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ) |
145 | 73 | nncnd 11397 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℂ) |
146 | 73 | nnne0d 11430 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0) |
147 | 144, 144,
145, 146 | divdird 11192 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
148 | 125 | rpcnd 12188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℂ) |
149 | 148 | 2halvesd 11633 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵) |
150 | 149 | oveq1d 6939 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚))) |
151 | 147, 150 | eqtr3d 2816 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚))) |
152 | 151 | oveq1d 6939 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹‘𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚)))) |
153 | 143, 152 | eqtrd 2814 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚)))) |
154 | 153 | oveq2d 6940 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚))))) |
155 | 139, 142,
154 | 3eqtr4d 2824 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))) |
156 | 137, 138,
155 | 3eqtr4d 2824 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐺‘𝑚)) − (1st
‘(𝐺‘𝑚))) = ((((abs ∘ − )
∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
157 | 132, 156 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
158 | 120, 157 | sylan2 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
159 | 158 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
160 | | simpr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
161 | | nnuz 12034 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
162 | 160, 161 | syl6eleq 2869 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
163 | 124, 129 | addcld 10398 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘
𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ) |
164 | 159, 162,
163 | fsumser 14877 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
165 | | eqidd 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚)) |
166 | 165, 162,
124 | fsumser 14877 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘)) |
167 | | ovollb2.1 |
. . . . . . . . . . 11
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
168 | 167 | fveq1i 6449 |
. . . . . . . . . 10
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
169 | 166, 168 | syl6eqr 2832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆‘𝑘)) |
170 | 11 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈
ℝ+) |
171 | 170 | rpcnd 12188 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
172 | | geo2sum 15017 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) →
Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘)))) |
173 | 160, 171,
172 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘)))) |
174 | 169, 173 | oveq12d 6942 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
175 | 130, 164,
174 | 3eqtr3d 2822 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
176 | 113, 175 | syl5eq 2826 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
177 | 116, 167 | ovolsf 23687 |
. . . . . . . . . 10
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
178 | 2, 177 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
179 | 178 | ffvelrnda 6625 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ (0[,)+∞)) |
180 | 115, 179 | sseldi 3819 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℝ) |
181 | 170 | rpred 12186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) |
182 | | nnnn0 11655 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
183 | 182 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
184 | | nnexpcl 13196 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
185 | 14, 183, 184 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℕ) |
186 | 185 | nnrpd 12184 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℝ+) |
187 | 170, 186 | rpdivcld 12203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈
ℝ+) |
188 | 187 | rpred 12186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ) |
189 | 181, 188 | resubcld 10806 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ) |
190 | 47 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
191 | 178 | frnd 6300 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
192 | 191, 43 | syl6ss 3833 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
193 | 192 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆
ℝ*) |
194 | 178 | ffnd 6294 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 Fn ℕ) |
195 | | fnfvelrn 6622 |
. . . . . . . . 9
⊢ ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
196 | 194, 195 | sylan 575 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
197 | | supxrub 12471 |
. . . . . . . 8
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘𝑘) ∈ ran 𝑆) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
198 | 193, 196,
197 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
199 | 181, 187 | ltsubrpd 12218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵) |
200 | 189, 181,
199 | ltled 10526 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵) |
201 | 180, 189,
190, 181, 198, 200 | le2addd 10997 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
202 | 176, 201 | eqbrtrd 4910 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
203 | 202 | ralrimiva 3148 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
204 | | ffn 6293 |
. . . . 5
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ 𝑇 Fn
ℕ) |
205 | | breq1 4891 |
. . . . . 6
⊢ (𝑦 = (𝑇‘𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
206 | 205 | ralrn 6628 |
. . . . 5
⊢ (𝑇 Fn ℕ →
(∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
207 | 41, 204, 206 | 3syl 18 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
208 | 203, 207 | mpbird 249 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
209 | | supxrleub 12473 |
. . . 4
⊢ ((ran
𝑇 ⊆
ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
→ (sup(ran 𝑇,
ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
210 | 44, 50, 209 | syl2anc 579 |
. . 3
⊢ (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran
𝑆, ℝ*,
< ) + 𝐵) ↔
∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
211 | 208, 210 | mpbird 249 |
. 2
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran
𝑆, ℝ*,
< ) + 𝐵)) |
212 | 7, 46, 50, 112, 211 | xrletrd 12310 |
1
⊢ (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) +
𝐵)) |