MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Structured version   Visualization version   GIF version

Theorem ovollb2lem 25365
Description: Lemma for ovollb2 25366. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovollb2.2 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
ovollb2.3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovollb2.4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovollb2.5 (𝜑𝐴 ran ([,] ∘ 𝐹))
ovollb2.6 (𝜑𝐵 ∈ ℝ+)
ovollb2.7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Assertion
Ref Expression
ovollb2lem (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝐵,𝑛   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovollb2lem
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4 (𝜑𝐴 ran ([,] ∘ 𝐹))
2 ovollb2.4 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolficcss 25346 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
42, 3syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
51, 4sstrd 3954 . . 3 (𝜑𝐴 ⊆ ℝ)
6 ovolcl 25355 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
75, 6syl 17 . 2 (𝜑 → (vol*‘𝐴) ∈ ℝ*)
8 ovolfcl 25343 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
92, 8sylan 580 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
109simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
11 ovollb2.6 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ+)
1211rphalfcld 12983 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 2) ∈ ℝ+)
1312adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
14 2nn 12235 . . . . . . . . . . . . . . 15 2 ∈ ℕ
15 nnnn0 12425 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 nnexpcl 14015 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1814, 16, 17sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
1918nnrpd 12969 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
2013, 19rpdivcld 12988 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ+)
2120rpred 12971 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ)
2210, 21resubcld 11582 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
239simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2423, 21readdcld 11179 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
2510, 20ltsubrpd 13003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
269simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2723, 20ltaddrpd 13004 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2810, 23, 24, 26, 27lelttrd 11308 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2922, 10, 24, 25, 28lttrd 11311 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
3022, 24, 29ltled 11298 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
31 df-br 5103 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3230, 31sylib 218 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3322, 24opelxpd 5670 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3432, 33elind 4159 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
35 ovollb2.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
3634, 35fmptd 7068 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 eqid 2729 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
38 ovollb2.3 . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
3937, 38ovolsf 25349 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
4036, 39syl 17 . . . . 5 (𝜑𝑇:ℕ⟶(0[,)+∞))
4140frnd 6678 . . . 4 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
42 icossxr 13369 . . . 4 (0[,)+∞) ⊆ ℝ*
4341, 42sstrdi 3956 . . 3 (𝜑 → ran 𝑇 ⊆ ℝ*)
44 supxrcl 13251 . . 3 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
46 ovollb2.7 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4711rpred 12971 . . . 4 (𝜑𝐵 ∈ ℝ)
4846, 47readdcld 11179 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ)
4948rexrd 11200 . 2 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
50 2fveq3 6845 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (1st ‘(𝐹𝑛)) = (1st ‘(𝐹𝑚)))
51 oveq2 7377 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚)))
5350, 52oveq12d 7387 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
54 2fveq3 6845 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐹𝑚)))
5554, 52oveq12d 7387 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
5653, 55opeq12d 4841 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
57 opex 5419 . . . . . . . . . . . . . . 15 ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩ ∈ V
5856, 35, 57fvmpt 6950 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
5958adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6059fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
61 ovex 7402 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V
62 ovex 7402 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V
6361, 62op1st 7955 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))
6460, 63eqtrdi 2780 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
65 ovolfcl 25343 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
662, 65sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
6766simp1d 1142 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
6812adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
69 nnnn0 12425 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7069adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
71 nnexpcl 14015 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
7214, 70, 71sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℕ)
7372nnrpd 12969 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ+)
7468, 73rpdivcld 12988 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℝ+)
7567, 74ltsubrpd 13003 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹𝑚)))
7664, 75eqbrtrd 5124 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
7776adantlr 715 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
78 ovolfcl 25343 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
7936, 78sylan 580 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8079simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8180adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8267adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
835sselda 3943 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
8483adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ)
85 ltletr 11242 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8681, 82, 84, 85syl3anc 1373 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8777, 86mpand 695 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ≤ 𝑧 → (1st ‘(𝐺𝑚)) < 𝑧))
8866simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
8988, 74ltaddrpd 13004 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9059fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
9161, 62op2nd 7956 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))
9290, 91eqtrdi 2780 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9389, 92breqtrrd 5130 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9493adantlr 715 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9588adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9679simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
9796adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
98 lelttr 11240 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
9984, 95, 97, 98syl3anc 1373 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10094, 99mpan2d 694 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹𝑚)) → 𝑧 < (2nd ‘(𝐺𝑚))))
10187, 100anim12d 609 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
102101reximdva 3146 . . . . . 6 ((𝜑𝑧𝐴) → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
103102ralimdva 3145 . . . . 5 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
104 ovolficc 25345 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
1055, 2, 104syl2anc 584 . . . . 5 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
106 ovolfioo 25344 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1075, 36, 106syl2anc 584 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
108103, 105, 1073imtr4d 294 . . . 4 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐺)))
1091, 108mpd 15 . . 3 (𝜑𝐴 ran ((,) ∘ 𝐺))
11038ovollb 25356 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐺)) → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11136, 109, 110syl2anc 584 . 2 (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11238fveq1i 6841 . . . . . . 7 (𝑇𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘)
113 fzfid 13914 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
114 rge0ssre 13393 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
115 eqid 2729 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
116115ovolfsf 25348 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
1172, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
118117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
119 elfznn 13490 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
120 ffvelcdm 7035 . . . . . . . . . . . 12 ((((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
121118, 119, 120syl2an 596 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
122114, 121sselid 3941 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℝ)
123122recnd 11178 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℂ)
12411adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℝ+)
125124, 73rpdivcld 12988 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℝ+)
126125rpcnd 12973 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ)
127119, 126sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
128127adantlr 715 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
129113, 123, 128fsumadd 15682 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))))
13037ovolfsval 25347 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13136, 130sylan 580 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13288recnd 11178 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℂ)
13374rpcnd 12973 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ)
13467recnd 11178 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℂ)
135134, 133subcld 11509 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ)
136132, 133, 135addsubassd 11529 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
13792, 64oveq12d 7387 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))
138132, 134, 126subadd23d 11531 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
139115ovolfsval 25347 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
1402, 139sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
141140oveq1d 7384 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))))
142133, 134, 133subsub3d 11539 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))))
14368rpcnd 12973 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ)
14472nncnd 12178 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
14572nnne0d 12212 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0)
146143, 143, 144, 145divdird 11972 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
147124rpcnd 12973 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℂ)
1481472halvesd 12404 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵)
149148oveq1d 7384 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚)))
150146, 149eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚)))
151150oveq1d 7384 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
152142, 151eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
153152oveq2d 7385 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
154138, 141, 1533eqtr4d 2774 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
155136, 137, 1543eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
156131, 155eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
157119, 156sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
158157adantlr 715 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
159 simpr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
160 nnuz 12812 . . . . . . . . . 10 ℕ = (ℤ‘1)
161159, 160eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
162123, 128addcld 11169 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ)
163158, 161, 162fsumser 15672 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
164 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚))
165164, 161, 123fsumser 15672 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
166 ovollb2.1 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
167166fveq1i 6841 . . . . . . . . . 10 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
168165, 167eqtr4di 2782 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆𝑘))
16911adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ+)
170169rpcnd 12973 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
171 geo2sum 15815 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
172159, 170, 171syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
173168, 172oveq12d 7387 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
174129, 163, 1733eqtr3d 2772 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
175112, 174eqtrid 2776 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
176115, 166ovolsf 25349 . . . . . . . . . 10 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1772, 176syl 17 . . . . . . . . 9 (𝜑𝑆:ℕ⟶(0[,)+∞))
178177ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ (0[,)+∞))
179114, 178sselid 3941 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
180169rpred 12971 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
181 nnnn0 12425 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
182181adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
183 nnexpcl 14015 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
18414, 182, 183sylancr 587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℕ)
185184nnrpd 12969 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℝ+)
186169, 185rpdivcld 12988 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ+)
187186rpred 12971 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ)
188180, 187resubcld 11582 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ)
18946adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
190177frnd 6678 . . . . . . . . . 10 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
191190, 42sstrdi 3956 . . . . . . . . 9 (𝜑 → ran 𝑆 ⊆ ℝ*)
192191adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
193177ffnd 6671 . . . . . . . . 9 (𝜑𝑆 Fn ℕ)
194 fnfvelrn 7034 . . . . . . . . 9 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
195193, 194sylan 580 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
196 supxrub 13260 . . . . . . . 8 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
197192, 195, 196syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
198180, 186ltsubrpd 13003 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵)
199188, 180, 198ltled 11298 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵)
200179, 188, 189, 180, 197, 199le2addd 11773 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
201175, 200eqbrtrd 5124 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
202201ralrimiva 3125 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
203 ffn 6670 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
204 breq1 5105 . . . . . 6 (𝑦 = (𝑇𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
205204ralrn 7042 . . . . 5 (𝑇 Fn ℕ → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20640, 203, 2053syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
207202, 206mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
208 supxrleub 13262 . . . 4 ((ran 𝑇 ⊆ ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20943, 49, 208syl2anc 584 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
210207, 209mpbird 257 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
2117, 45, 49, 111, 210xrletrd 13098 1 (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  wss 3911  cop 4591   cuni 4867   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cuz 12769  +crp 12927  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  ...cfz 13444  seqcseq 13942  cexp 14002  abscabs 15176  Σcsu 15628  vol*covol 25339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-ovol 25341
This theorem is referenced by:  ovollb2  25366
  Copyright terms: Public domain W3C validator