MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Structured version   Visualization version   GIF version

Theorem ovollb2lem 24095
Description: Lemma for ovollb2 24096. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovollb2.2 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
ovollb2.3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovollb2.4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovollb2.5 (𝜑𝐴 ran ([,] ∘ 𝐹))
ovollb2.6 (𝜑𝐵 ∈ ℝ+)
ovollb2.7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Assertion
Ref Expression
ovollb2lem (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝐵,𝑛   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovollb2lem
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4 (𝜑𝐴 ran ([,] ∘ 𝐹))
2 ovollb2.4 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolficcss 24076 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
42, 3syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
51, 4sstrd 3928 . . 3 (𝜑𝐴 ⊆ ℝ)
6 ovolcl 24085 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
75, 6syl 17 . 2 (𝜑 → (vol*‘𝐴) ∈ ℝ*)
8 ovolfcl 24073 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
92, 8sylan 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
109simp1d 1139 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
11 ovollb2.6 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ+)
1211rphalfcld 12435 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 2) ∈ ℝ+)
1312adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
14 2nn 11702 . . . . . . . . . . . . . . 15 2 ∈ ℕ
15 nnnn0 11896 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 nnexpcl 13442 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1814, 16, 17sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
1918nnrpd 12421 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
2013, 19rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ+)
2120rpred 12423 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ)
2210, 21resubcld 11061 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
239simp2d 1140 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2423, 21readdcld 10663 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
2510, 20ltsubrpd 12455 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
269simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2723, 20ltaddrpd 12456 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2810, 23, 24, 26, 27lelttrd 10791 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2922, 10, 24, 25, 28lttrd 10794 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
3022, 24, 29ltled 10781 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
31 df-br 5034 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3230, 31sylib 221 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3322, 24opelxpd 5561 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3432, 33elind 4124 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
35 ovollb2.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
3634, 35fmptd 6859 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 eqid 2801 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
38 ovollb2.3 . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
3937, 38ovolsf 24079 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
4036, 39syl 17 . . . . 5 (𝜑𝑇:ℕ⟶(0[,)+∞))
4140frnd 6498 . . . 4 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
42 icossxr 12814 . . . 4 (0[,)+∞) ⊆ ℝ*
4341, 42sstrdi 3930 . . 3 (𝜑 → ran 𝑇 ⊆ ℝ*)
44 supxrcl 12700 . . 3 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
46 ovollb2.7 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4711rpred 12423 . . . 4 (𝜑𝐵 ∈ ℝ)
4846, 47readdcld 10663 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ)
4948rexrd 10684 . 2 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
50 2fveq3 6654 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (1st ‘(𝐹𝑛)) = (1st ‘(𝐹𝑚)))
51 oveq2 7147 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251oveq2d 7155 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚)))
5350, 52oveq12d 7157 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
54 2fveq3 6654 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐹𝑚)))
5554, 52oveq12d 7157 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
5653, 55opeq12d 4776 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
57 opex 5324 . . . . . . . . . . . . . . 15 ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩ ∈ V
5856, 35, 57fvmpt 6749 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
5958adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6059fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
61 ovex 7172 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V
62 ovex 7172 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V
6361, 62op1st 7683 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))
6460, 63eqtrdi 2852 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
65 ovolfcl 24073 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
662, 65sylan 583 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
6766simp1d 1139 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
6812adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
69 nnnn0 11896 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7069adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
71 nnexpcl 13442 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
7214, 70, 71sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℕ)
7372nnrpd 12421 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ+)
7468, 73rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℝ+)
7567, 74ltsubrpd 12455 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹𝑚)))
7664, 75eqbrtrd 5055 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
7776adantlr 714 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
78 ovolfcl 24073 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
7936, 78sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8079simp1d 1139 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8180adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8267adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
835sselda 3918 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
8483adantr 484 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ)
85 ltletr 10725 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8681, 82, 84, 85syl3anc 1368 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8777, 86mpand 694 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ≤ 𝑧 → (1st ‘(𝐺𝑚)) < 𝑧))
8866simp2d 1140 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
8988, 74ltaddrpd 12456 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9059fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
9161, 62op2nd 7684 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))
9290, 91eqtrdi 2852 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9389, 92breqtrrd 5061 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9493adantlr 714 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9588adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9679simp2d 1140 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
9796adantlr 714 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
98 lelttr 10724 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
9984, 95, 97, 98syl3anc 1368 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10094, 99mpan2d 693 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹𝑚)) → 𝑧 < (2nd ‘(𝐺𝑚))))
10187, 100anim12d 611 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
102101reximdva 3236 . . . . . 6 ((𝜑𝑧𝐴) → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
103102ralimdva 3147 . . . . 5 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
104 ovolficc 24075 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
1055, 2, 104syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
106 ovolfioo 24074 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1075, 36, 106syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
108103, 105, 1073imtr4d 297 . . . 4 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐺)))
1091, 108mpd 15 . . 3 (𝜑𝐴 ran ((,) ∘ 𝐺))
11038ovollb 24086 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐺)) → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11136, 109, 110syl2anc 587 . 2 (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11238fveq1i 6650 . . . . . . 7 (𝑇𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘)
113 fzfid 13340 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
114 rge0ssre 12838 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
115 eqid 2801 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
116115ovolfsf 24078 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
1172, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
118117adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
119 elfznn 12935 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
120 ffvelrn 6830 . . . . . . . . . . . 12 ((((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
121118, 119, 120syl2an 598 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
122114, 121sseldi 3916 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℝ)
123122recnd 10662 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℂ)
12411adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℝ+)
125124, 73rpdivcld 12440 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℝ+)
126125rpcnd 12425 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ)
127119, 126sylan2 595 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
128127adantlr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
129113, 123, 128fsumadd 15091 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))))
13037ovolfsval 24077 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13136, 130sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13288recnd 10662 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℂ)
13374rpcnd 12425 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ)
13467recnd 10662 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℂ)
135134, 133subcld 10990 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ)
136132, 133, 135addsubassd 11010 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
13792, 64oveq12d 7157 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))
138132, 134, 126subadd23d 11012 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
139115ovolfsval 24077 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
1402, 139sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
141140oveq1d 7154 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))))
142133, 134, 133subsub3d 11020 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))))
14368rpcnd 12425 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ)
14472nncnd 11645 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
14572nnne0d 11679 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0)
146143, 143, 144, 145divdird 11447 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
147124rpcnd 12425 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℂ)
1481472halvesd 11875 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵)
149148oveq1d 7154 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚)))
150146, 149eqtr3d 2838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚)))
151150oveq1d 7154 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
152142, 151eqtrd 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
153152oveq2d 7155 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
154138, 141, 1533eqtr4d 2846 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
155136, 137, 1543eqtr4d 2846 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
156131, 155eqtrd 2836 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
157119, 156sylan2 595 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
158157adantlr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
159 simpr 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
160 nnuz 12273 . . . . . . . . . 10 ℕ = (ℤ‘1)
161159, 160eleqtrdi 2903 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
162123, 128addcld 10653 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ)
163158, 161, 162fsumser 15082 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
164 eqidd 2802 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚))
165164, 161, 123fsumser 15082 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
166 ovollb2.1 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
167166fveq1i 6650 . . . . . . . . . 10 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
168165, 167eqtr4di 2854 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆𝑘))
16911adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ+)
170169rpcnd 12425 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
171 geo2sum 15224 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
172159, 170, 171syl2anc 587 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
173168, 172oveq12d 7157 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
174129, 163, 1733eqtr3d 2844 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
175112, 174syl5eq 2848 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
176115, 166ovolsf 24079 . . . . . . . . . 10 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1772, 176syl 17 . . . . . . . . 9 (𝜑𝑆:ℕ⟶(0[,)+∞))
178177ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ (0[,)+∞))
179114, 178sseldi 3916 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
180169rpred 12423 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
181 nnnn0 11896 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
182181adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
183 nnexpcl 13442 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
18414, 182, 183sylancr 590 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℕ)
185184nnrpd 12421 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℝ+)
186169, 185rpdivcld 12440 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ+)
187186rpred 12423 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ)
188180, 187resubcld 11061 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ)
18946adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
190177frnd 6498 . . . . . . . . . 10 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
191190, 42sstrdi 3930 . . . . . . . . 9 (𝜑 → ran 𝑆 ⊆ ℝ*)
192191adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
193177ffnd 6492 . . . . . . . . 9 (𝜑𝑆 Fn ℕ)
194 fnfvelrn 6829 . . . . . . . . 9 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
195193, 194sylan 583 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
196 supxrub 12709 . . . . . . . 8 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
197192, 195, 196syl2anc 587 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
198180, 186ltsubrpd 12455 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵)
199188, 180, 198ltled 10781 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵)
200179, 188, 189, 180, 197, 199le2addd 11252 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
201175, 200eqbrtrd 5055 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
202201ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
203 ffn 6491 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
204 breq1 5036 . . . . . 6 (𝑦 = (𝑇𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
205204ralrn 6835 . . . . 5 (𝑇 Fn ℕ → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20640, 203, 2053syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
207202, 206mpbird 260 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
208 supxrleub 12711 . . . 4 ((ran 𝑇 ⊆ ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20943, 49, 208syl2anc 587 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
210207, 209mpbird 260 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
2117, 45, 49, 111, 210xrletrd 12547 1 (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  cin 3883  wss 3884  cop 4534   cuni 4803   class class class wbr 5033  cmpt 5113   × cxp 5521  ran crn 5524  ccom 5527   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  supcsup 8892  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533  +∞cpnf 10665  *cxr 10667   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  cuz 12235  +crp 12381  (,)cioo 12730  [,)cico 12732  [,]cicc 12733  ...cfz 12889  seqcseq 13368  cexp 13429  abscabs 14588  Σcsu 15037  vol*covol 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-ovol 24071
This theorem is referenced by:  ovollb2  24096
  Copyright terms: Public domain W3C validator