MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Structured version   Visualization version   GIF version

Theorem ovollb2lem 24357
Description: Lemma for ovollb2 24358. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovollb2.2 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
ovollb2.3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovollb2.4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovollb2.5 (𝜑𝐴 ran ([,] ∘ 𝐹))
ovollb2.6 (𝜑𝐵 ∈ ℝ+)
ovollb2.7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Assertion
Ref Expression
ovollb2lem (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝐵,𝑛   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem ovollb2lem
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4 (𝜑𝐴 ran ([,] ∘ 𝐹))
2 ovollb2.4 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolficcss 24338 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
42, 3syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
51, 4sstrd 3901 . . 3 (𝜑𝐴 ⊆ ℝ)
6 ovolcl 24347 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
75, 6syl 17 . 2 (𝜑 → (vol*‘𝐴) ∈ ℝ*)
8 ovolfcl 24335 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
92, 8sylan 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
109simp1d 1144 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
11 ovollb2.6 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ+)
1211rphalfcld 12623 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 2) ∈ ℝ+)
1312adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
14 2nn 11886 . . . . . . . . . . . . . . 15 2 ∈ ℕ
15 nnnn0 12080 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
17 nnexpcl 13631 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1814, 16, 17sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
1918nnrpd 12609 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
2013, 19rpdivcld 12628 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ+)
2120rpred 12611 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ)
2210, 21resubcld 11243 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
239simp2d 1145 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2423, 21readdcld 10845 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ)
2510, 20ltsubrpd 12643 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
269simp3d 1146 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2723, 20ltaddrpd 12644 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2810, 23, 24, 26, 27lelttrd 10973 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
2922, 10, 24, 25, 28lttrd 10976 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
3022, 24, 29ltled 10963 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))))
31 df-br 5044 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3230, 31sylib 221 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ≤ )
3322, 24opelxpd 5578 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ (ℝ × ℝ))
3432, 33elind 4098 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
35 ovollb2.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩)
3634, 35fmptd 6920 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
37 eqid 2734 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
38 ovollb2.3 . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
3937, 38ovolsf 24341 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
4036, 39syl 17 . . . . 5 (𝜑𝑇:ℕ⟶(0[,)+∞))
4140frnd 6542 . . . 4 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
42 icossxr 13003 . . . 4 (0[,)+∞) ⊆ ℝ*
4341, 42sstrdi 3903 . . 3 (𝜑 → ran 𝑇 ⊆ ℝ*)
44 supxrcl 12888 . . 3 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
46 ovollb2.7 . . . 4 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4711rpred 12611 . . . 4 (𝜑𝐵 ∈ ℝ)
4846, 47readdcld 10845 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ)
4948rexrd 10866 . 2 (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
50 2fveq3 6711 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (1st ‘(𝐹𝑛)) = (1st ‘(𝐹𝑚)))
51 oveq2 7210 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251oveq2d 7218 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚)))
5350, 52oveq12d 7220 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
54 2fveq3 6711 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐹𝑚)))
5554, 52oveq12d 7220 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
5653, 55opeq12d 4782 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ⟨((1st ‘(𝐹𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝐵 / 2) / (2↑𝑛)))⟩ = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
57 opex 5337 . . . . . . . . . . . . . . 15 ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩ ∈ V
5856, 35, 57fvmpt 6807 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
5958adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) = ⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩)
6059fveq2d 6710 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
61 ovex 7235 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V
62 ovex 7235 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V
6361, 62op1st 7758 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))
6460, 63eqtrdi 2790 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) = ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))
65 ovolfcl 24335 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
662, 65sylan 583 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ≤ (2nd ‘(𝐹𝑚))))
6766simp1d 1144 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
6812adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℝ+)
69 nnnn0 12080 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
7069adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
71 nnexpcl 13631 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
7214, 70, 71sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℕ)
7372nnrpd 12609 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ+)
7468, 73rpdivcld 12628 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℝ+)
7567, 74ltsubrpd 12643 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹𝑚)))
7664, 75eqbrtrd 5065 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
7776adantlr 715 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)))
78 ovolfcl 24335 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
7936, 78sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐺𝑚)) ≤ (2nd ‘(𝐺𝑚))))
8079simp1d 1144 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8180adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐺𝑚)) ∈ ℝ)
8267adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℝ)
835sselda 3891 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
8483adantr 484 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ)
85 ltletr 10907 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) ∈ ℝ ∧ (1st ‘(𝐹𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8681, 82, 84, 85syl3anc 1373 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < (1st ‘(𝐹𝑚)) ∧ (1st ‘(𝐹𝑚)) ≤ 𝑧) → (1st ‘(𝐺𝑚)) < 𝑧))
8777, 86mpand 695 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) ≤ 𝑧 → (1st ‘(𝐺𝑚)) < 𝑧))
8866simp2d 1145 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
8988, 74ltaddrpd 12644 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9059fveq2d 6710 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩))
9161, 62op2nd 7759 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))⟩) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚)))
9290, 91eqtrdi 2790 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
9389, 92breqtrrd 5071 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9493adantlr 715 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚)))
9588adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℝ)
9679simp2d 1145 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
9796adantlr 715 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (2nd ‘(𝐺𝑚)) ∈ ℝ)
98 lelttr 10906 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (2nd ‘(𝐹𝑚)) ∈ ℝ ∧ (2nd ‘(𝐺𝑚)) ∈ ℝ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
9984, 95, 97, 98syl3anc 1373 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹𝑚)) ∧ (2nd ‘(𝐹𝑚)) < (2nd ‘(𝐺𝑚))) → 𝑧 < (2nd ‘(𝐺𝑚))))
10094, 99mpan2d 694 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹𝑚)) → 𝑧 < (2nd ‘(𝐺𝑚))))
10187, 100anim12d 612 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
102101reximdva 3186 . . . . . 6 ((𝜑𝑧𝐴) → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
103102ralimdva 3093 . . . . 5 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
104 ovolficc 24337 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
1055, 2, 104syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑚)))))
106 ovolfioo 24336 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1075, 36, 106syl2anc 587 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
108103, 105, 1073imtr4d 297 . . . 4 (𝜑 → (𝐴 ran ([,] ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐺)))
1091, 108mpd 15 . . 3 (𝜑𝐴 ran ((,) ∘ 𝐺))
11038ovollb 24348 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐺)) → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11136, 109, 110syl2anc 587 . 2 (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, < ))
11238fveq1i 6707 . . . . . . 7 (𝑇𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘)
113 fzfid 13529 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
114 rge0ssre 13027 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
115 eqid 2734 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
116115ovolfsf 24340 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
1172, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
118117adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
119 elfznn 13124 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
120 ffvelrn 6891 . . . . . . . . . . . 12 ((((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
121118, 119, 120syl2an 599 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞))
122114, 121sseldi 3889 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℝ)
123122recnd 10844 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) ∈ ℂ)
12411adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℝ+)
125124, 73rpdivcld 12628 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℝ+)
126125rpcnd 12613 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ)
127119, 126sylan2 596 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
128127adantlr 715 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ)
129113, 123, 128fsumadd 15286 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))))
13037ovolfsval 24339 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13136, 130sylan 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))))
13288recnd 10844 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2nd ‘(𝐹𝑚)) ∈ ℂ)
13374rpcnd 12613 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ)
13467recnd 10844 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (1st ‘(𝐹𝑚)) ∈ ℂ)
135134, 133subcld 11172 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ)
136132, 133, 135addsubassd 11192 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
13792, 64oveq12d 7220 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = (((2nd ‘(𝐹𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))
138132, 134, 126subadd23d 11194 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
139115ovolfsval 24339 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
1402, 139sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))))
141140oveq1d 7217 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹𝑚)) − (1st ‘(𝐹𝑚))) + (𝐵 / (2↑𝑚))))
142133, 134, 133subsub3d 11202 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))))
14368rpcnd 12613 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ)
14472nncnd 11829 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
14572nnne0d 11863 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0)
146143, 143, 144, 145divdird 11629 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))))
147124rpcnd 12613 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ ℂ)
1481472halvesd 12059 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵)
149148oveq1d 7217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚)))
150146, 149eqtr3d 2776 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚)))
151150oveq1d 7217 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
152142, 151eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚))))
153152oveq2d 7218 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹𝑚)))))
154138, 141, 1533eqtr4d 2784 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹𝑚)) − ((𝐵 / 2) / (2↑𝑚))))))
155136, 137, 1543eqtr4d 2784 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2nd ‘(𝐺𝑚)) − (1st ‘(𝐺𝑚))) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
156131, 155eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
157119, 156sylan2 596 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
158157adantlr 715 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))))
159 simpr 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
160 nnuz 12460 . . . . . . . . . 10 ℕ = (ℤ‘1)
161159, 160eleqtrdi 2844 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
162123, 128addcld 10835 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ)
163158, 161, 162fsumser 15277 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
164 eqidd 2735 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚))
165164, 161, 123fsumser 15277 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
166 ovollb2.1 . . . . . . . . . . 11 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
167166fveq1i 6707 . . . . . . . . . 10 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
168165, 167eqtr4di 2792 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆𝑘))
16911adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ+)
170169rpcnd 12613 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
171 geo2sum 15418 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
172159, 170, 171syl2anc 587 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘))))
173168, 172oveq12d 7220 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
174129, 163, 1733eqtr3d 2782 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
175112, 174syl5eq 2786 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) = ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))))
176115, 166ovolsf 24341 . . . . . . . . . 10 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1772, 176syl 17 . . . . . . . . 9 (𝜑𝑆:ℕ⟶(0[,)+∞))
178177ffvelrnda 6893 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ (0[,)+∞))
179114, 178sseldi 3889 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
180169rpred 12611 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
181 nnnn0 12080 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
182181adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
183 nnexpcl 13631 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
18414, 182, 183sylancr 590 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℕ)
185184nnrpd 12609 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (2↑𝑘) ∈ ℝ+)
186169, 185rpdivcld 12628 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ+)
187186rpred 12611 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ)
188180, 187resubcld 11243 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ)
18946adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
190177frnd 6542 . . . . . . . . . 10 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
191190, 42sstrdi 3903 . . . . . . . . 9 (𝜑 → ran 𝑆 ⊆ ℝ*)
192191adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
193177ffnd 6535 . . . . . . . . 9 (𝜑𝑆 Fn ℕ)
194 fnfvelrn 6890 . . . . . . . . 9 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
195193, 194sylan 583 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
196 supxrub 12897 . . . . . . . 8 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
197192, 195, 196syl2anc 587 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
198180, 186ltsubrpd 12643 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵)
199188, 180, 198ltled 10963 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵)
200179, 188, 189, 180, 197, 199le2addd 11434 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑆𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
201175, 200eqbrtrd 5065 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
202201ralrimiva 3098 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
203 ffn 6534 . . . . 5 (𝑇:ℕ⟶(0[,)+∞) → 𝑇 Fn ℕ)
204 breq1 5046 . . . . . 6 (𝑦 = (𝑇𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
205204ralrn 6896 . . . . 5 (𝑇 Fn ℕ → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20640, 203, 2053syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
207202, 206mpbird 260 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
208 supxrleub 12899 . . . 4 ((ran 𝑇 ⊆ ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
20943, 49, 208syl2anc 587 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)))
210207, 209mpbird 260 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
2117, 45, 49, 111, 210xrletrd 12735 1 (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wrex 3055  cin 3856  wss 3857  cop 4537   cuni 4809   class class class wbr 5043  cmpt 5124   × cxp 5538  ran crn 5541  ccom 5544   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  1st c1st 7748  2nd c2nd 7749  supcsup 9045  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715  +∞cpnf 10847  *cxr 10849   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cuz 12421  +crp 12569  (,)cioo 12918  [,)cico 12920  [,]cicc 12921  ...cfz 13078  seqcseq 13557  cexp 13618  abscabs 14780  Σcsu 15232  vol*covol 24331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-ioo 12922  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-ovol 24333
This theorem is referenced by:  ovollb2  24358
  Copyright terms: Public domain W3C validator