Step | Hyp | Ref
| Expression |
1 | | ovollb2.5 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
([,] ∘ 𝐹)) |
2 | | ovollb2.4 |
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
3 | | ovolficcss 24538 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ ran ([,] ∘
𝐹) ⊆
ℝ) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
5 | 1, 4 | sstrd 3927 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
6 | | ovolcl 24547 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
7 | 5, 6 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ*) |
8 | | ovolfcl 24535 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
9 | 2, 8 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
10 | 9 | simp1d 1140 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
11 | | ovollb2.6 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
12 | 11 | rphalfcld 12713 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 / 2) ∈
ℝ+) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 / 2) ∈
ℝ+) |
14 | | 2nn 11976 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
15 | | nnnn0 12170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
16 | 15 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
17 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
18 | 14, 16, 17 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) |
19 | 18 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) |
20 | 13, 19 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈
ℝ+) |
21 | 20 | rpred 12701 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑛)) ∈ ℝ) |
22 | 10, 21 | resubcld 11333 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) |
23 | 9 | simp2d 1141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
24 | 23, 21 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ∈ ℝ) |
25 | 10, 20 | ltsubrpd 12733 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < (1st ‘(𝐹‘𝑛))) |
26 | 9 | simp3d 1142 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
27 | 23, 20 | ltaddrpd 12734 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) < ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
28 | 10, 23, 24, 26, 27 | lelttrd 11063 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) < ((2nd
‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
29 | 22, 10, 24, 25, 28 | lttrd 11066 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) < ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
30 | 22, 24, 29 | ltled 11053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))) |
31 | | df-br 5071 |
. . . . . . . . 9
⊢
(((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) ≤ ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) ↔ 〈((1st
‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ≤ ) |
32 | 30, 31 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ≤ ) |
33 | 22, 24 | opelxpd 5618 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ (ℝ ×
ℝ)) |
34 | 32, 33 | elind 4124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 ∈ ( ≤ ∩ (ℝ
× ℝ))) |
35 | | ovollb2.2 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉) |
36 | 34, 35 | fmptd 6970 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
37 | | eqid 2738 |
. . . . . . 7
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
38 | | ovollb2.3 |
. . . . . . 7
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
39 | 37, 38 | ovolsf 24541 |
. . . . . 6
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
40 | 36, 39 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
41 | 40 | frnd 6592 |
. . . 4
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
42 | | icossxr 13093 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ* |
43 | 41, 42 | sstrdi 3929 |
. . 3
⊢ (𝜑 → ran 𝑇 ⊆
ℝ*) |
44 | | supxrcl 12978 |
. . 3
⊢ (ran
𝑇 ⊆
ℝ* → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
45 | 43, 44 | syl 17 |
. 2
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
46 | | ovollb2.7 |
. . . 4
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
47 | 11 | rpred 12701 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
48 | 46, 47 | readdcld 10935 |
. . 3
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈
ℝ) |
49 | 48 | rexrd 10956 |
. 2
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈
ℝ*) |
50 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (1st ‘(𝐹‘𝑛)) = (1st ‘(𝐹‘𝑚))) |
51 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚)) |
52 | 51 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → ((𝐵 / 2) / (2↑𝑛)) = ((𝐵 / 2) / (2↑𝑚))) |
53 | 50, 52 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))) = ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) |
54 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (2nd ‘(𝐹‘𝑛)) = (2nd ‘(𝐹‘𝑚))) |
55 | 54, 52 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
56 | 53, 55 | opeq12d 4809 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → 〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉 = 〈((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
57 | | opex 5373 |
. . . . . . . . . . . . . . 15
⊢
〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉 ∈ V |
58 | 56, 35, 57 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → (𝐺‘𝑚) = 〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
59 | 58 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) = 〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) |
60 | 59 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) = (1st
‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉)) |
61 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ V |
62 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) ∈ V |
63 | 61, 62 | op1st 7812 |
. . . . . . . . . . . 12
⊢
(1st ‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) = ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) |
64 | 60, 63 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) = ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) |
65 | | ovolfcl 24535 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ≤ (2nd
‘(𝐹‘𝑚)))) |
66 | 2, 65 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ≤ (2nd
‘(𝐹‘𝑚)))) |
67 | 66 | simp1d 1140 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℝ) |
68 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / 2) ∈
ℝ+) |
69 | | nnnn0 12170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0) |
71 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
72 | 14, 70, 71 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℕ) |
73 | 72 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℝ+) |
74 | 68, 73 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈
ℝ+) |
75 | 67, 74 | ltsubrpd 12733 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) < (1st ‘(𝐹‘𝑚))) |
76 | 64, 75 | eqbrtrd 5092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚))) |
77 | 76 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚))) |
78 | | ovolfcl 24535 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐺‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐺‘𝑚)) ≤ (2nd
‘(𝐺‘𝑚)))) |
79 | 36, 78 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐺‘𝑚)) ∈ ℝ ∧
(2nd ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐺‘𝑚)) ≤ (2nd
‘(𝐺‘𝑚)))) |
80 | 79 | simp1d 1140 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) ∈
ℝ) |
81 | 80 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐺‘𝑚)) ∈
ℝ) |
82 | 67 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℝ) |
83 | 5 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
84 | 83 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℝ) |
85 | | ltletr 10997 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑚)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑚)) ∈ ℝ ∧ 𝑧 ∈ ℝ) →
(((1st ‘(𝐺‘𝑚)) < (1st ‘(𝐹‘𝑚)) ∧ (1st ‘(𝐹‘𝑚)) ≤ 𝑧) → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
86 | 81, 82, 84, 85 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐺‘𝑚)) < (1st
‘(𝐹‘𝑚)) ∧ (1st
‘(𝐹‘𝑚)) ≤ 𝑧) → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
87 | 77, 86 | mpand 691 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 → (1st ‘(𝐺‘𝑚)) < 𝑧)) |
88 | 66 | simp2d 1141 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℝ) |
89 | 88, 74 | ltaddrpd 12734 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < ((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
90 | 59 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) = (2nd
‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉)) |
91 | 61, 62 | op2nd 7813 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))), ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))〉) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) |
92 | 90, 91 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) = ((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
93 | 89, 92 | breqtrrd 5098 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) |
94 | 93 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) |
95 | 88 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℝ) |
96 | 79 | simp2d 1141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) ∈
ℝ) |
97 | 96 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐺‘𝑚)) ∈
ℝ) |
98 | | lelttr 10996 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℝ ∧ (2nd
‘(𝐺‘𝑚)) ∈ ℝ) →
((𝑧 ≤ (2nd
‘(𝐹‘𝑚)) ∧ (2nd
‘(𝐹‘𝑚)) < (2nd
‘(𝐺‘𝑚))) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
99 | 84, 95, 97, 98 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 ≤ (2nd ‘(𝐹‘𝑚)) ∧ (2nd ‘(𝐹‘𝑚)) < (2nd ‘(𝐺‘𝑚))) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
100 | 94, 99 | mpan2d 690 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 ≤ (2nd ‘(𝐹‘𝑚)) → 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
101 | 87, 100 | anim12d 608 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
102 | 101 | reximdva 3202 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
103 | 102 | ralimdva 3102 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))) → ∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
104 | | ovolficc 24537 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))))) |
105 | 5, 2, 104 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑚))))) |
106 | | ovolfioo 24536 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
107 | 5, 36, 106 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
108 | 103, 105,
107 | 3imtr4d 293 |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) →
𝐴 ⊆ ∪ ran ((,) ∘ 𝐺))) |
109 | 1, 108 | mpd 15 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐺)) |
110 | 38 | ovollb 24548 |
. . 3
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝐺)) →
(vol*‘𝐴) ≤ sup(ran
𝑇, ℝ*,
< )) |
111 | 36, 109, 110 | syl2anc 583 |
. 2
⊢ (𝜑 → (vol*‘𝐴) ≤ sup(ran 𝑇, ℝ*, <
)) |
112 | 38 | fveq1i 6757 |
. . . . . . 7
⊢ (𝑇‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) |
113 | | fzfid 13621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
114 | | rge0ssre 13117 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
115 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
116 | 115 | ovolfsf 24540 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
117 | 2, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
118 | 117 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs ∘ −
) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
119 | | elfznn 13214 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ) |
120 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ 𝑚 ∈ ℕ) → (((abs
∘ − ) ∘ 𝐹)‘𝑚) ∈ (0[,)+∞)) |
121 | 118, 119,
120 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ (0[,)+∞)) |
122 | 114, 121 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ ℝ) |
123 | 122 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) ∈ ℂ) |
124 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐵 ∈
ℝ+) |
125 | 124, 73 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈
ℝ+) |
126 | 125 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
127 | 119, 126 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
128 | 127 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (𝐵 / (2↑𝑚)) ∈ ℂ) |
129 | 113, 123,
128 | fsumadd 15380 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)))) |
130 | 37 | ovolfsval 24539 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺‘𝑚)) − (1st ‘(𝐺‘𝑚)))) |
131 | 36, 130 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((2nd ‘(𝐺‘𝑚)) − (1st ‘(𝐺‘𝑚)))) |
132 | 88 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℂ) |
133 | 74 | rpcnd 12703 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) / (2↑𝑚)) ∈ ℂ) |
134 | 67 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℂ) |
135 | 134, 133 | subcld 11262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((1st
‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))) ∈ ℂ) |
136 | 132, 133,
135 | addsubassd 11282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((2nd ‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))) |
137 | 92, 64 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐺‘𝑚)) − (1st
‘(𝐺‘𝑚))) = (((2nd
‘(𝐹‘𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) |
138 | 132, 134,
126 | subadd23d 11284 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2nd
‘(𝐹‘𝑚)) − (1st
‘(𝐹‘𝑚))) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚))))) |
139 | 115 | ovolfsval 24539 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚)))) |
140 | 2, 139 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑚) = ((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚)))) |
141 | 140 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (((2nd ‘(𝐹‘𝑚)) − (1st ‘(𝐹‘𝑚))) + (𝐵 / (2↑𝑚)))) |
142 | 133, 134,
133 | subsub3d 11292 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹‘𝑚)))) |
143 | 68 | rpcnd 12703 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐵 / 2) ∈ ℂ) |
144 | 72 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈
ℂ) |
145 | 72 | nnne0d 11953 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ≠ 0) |
146 | 143, 143,
144, 145 | divdird 11719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚)))) |
147 | 124 | rpcnd 12703 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℂ) |
148 | 147 | 2halvesd 12149 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐵 / 2) + (𝐵 / 2)) = 𝐵) |
149 | 148 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) + (𝐵 / 2)) / (2↑𝑚)) = (𝐵 / (2↑𝑚))) |
150 | 146, 149 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) = (𝐵 / (2↑𝑚))) |
151 | 150 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((𝐵 / 2) / (2↑𝑚)) + ((𝐵 / 2) / (2↑𝑚))) − (1st ‘(𝐹‘𝑚))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚)))) |
152 | 142, 151 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))) = ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚)))) |
153 | 152 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚))))) = ((2nd ‘(𝐹‘𝑚)) + ((𝐵 / (2↑𝑚)) − (1st ‘(𝐹‘𝑚))))) |
154 | 138, 141,
153 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = ((2nd ‘(𝐹‘𝑚)) + (((𝐵 / 2) / (2↑𝑚)) − ((1st ‘(𝐹‘𝑚)) − ((𝐵 / 2) / (2↑𝑚)))))) |
155 | 136, 137,
154 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2nd
‘(𝐺‘𝑚)) − (1st
‘(𝐺‘𝑚))) = ((((abs ∘ − )
∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
156 | 131, 155 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
157 | 119, 156 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
158 | 157 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑚) = ((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚)))) |
159 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
160 | | nnuz 12550 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
161 | 159, 160 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
162 | 123, 128 | addcld 10925 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((((abs ∘ − ) ∘
𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) ∈ ℂ) |
163 | 158, 161,
162 | fsumser 15370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((((abs ∘ − ) ∘ 𝐹)‘𝑚) + (𝐵 / (2↑𝑚))) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
164 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑚) = (((abs ∘ − ) ∘ 𝐹)‘𝑚)) |
165 | 164, 161,
123 | fsumser 15370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘)) |
166 | | ovollb2.1 |
. . . . . . . . . . 11
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
167 | 166 | fveq1i 6757 |
. . . . . . . . . 10
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
168 | 165, 167 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) = (𝑆‘𝑘)) |
169 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈
ℝ+) |
170 | 169 | rpcnd 12703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
171 | | geo2sum 15513 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝐵 ∈ ℂ) →
Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘)))) |
172 | 159, 170,
171 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚)) = (𝐵 − (𝐵 / (2↑𝑘)))) |
173 | 168, 172 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑚 ∈ (1...𝑘)(((abs ∘ − ) ∘ 𝐹)‘𝑚) + Σ𝑚 ∈ (1...𝑘)(𝐵 / (2↑𝑚))) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
174 | 129, 163,
173 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
175 | 112, 174 | syl5eq 2791 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) = ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘))))) |
176 | 115, 166 | ovolsf 24541 |
. . . . . . . . . 10
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
177 | 2, 176 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
178 | 177 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ (0[,)+∞)) |
179 | 114, 178 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℝ) |
180 | 169 | rpred 12701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ) |
181 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
182 | 181 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
183 | | nnexpcl 13723 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
184 | 14, 182, 183 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℕ) |
185 | 184 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2↑𝑘) ∈
ℝ+) |
186 | 169, 185 | rpdivcld 12718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈
ℝ+) |
187 | 186 | rpred 12701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (2↑𝑘)) ∈ ℝ) |
188 | 180, 187 | resubcld 11333 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ∈ ℝ) |
189 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
190 | 177 | frnd 6592 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
191 | 190, 42 | sstrdi 3929 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
192 | 191 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆
ℝ*) |
193 | 177 | ffnd 6585 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 Fn ℕ) |
194 | | fnfvelrn 6940 |
. . . . . . . . 9
⊢ ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
195 | 193, 194 | sylan 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
196 | | supxrub 12987 |
. . . . . . . 8
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘𝑘) ∈ ran 𝑆) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
197 | 192, 195,
196 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
198 | 180, 186 | ltsubrpd 12733 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) < 𝐵) |
199 | 188, 180,
198 | ltled 11053 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 − (𝐵 / (2↑𝑘))) ≤ 𝐵) |
200 | 179, 188,
189, 180, 197, 199 | le2addd 11524 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘𝑘) + (𝐵 − (𝐵 / (2↑𝑘)))) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
201 | 175, 200 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
202 | 201 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
203 | | ffn 6584 |
. . . . 5
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ 𝑇 Fn
ℕ) |
204 | | breq1 5073 |
. . . . . 6
⊢ (𝑦 = (𝑇‘𝑘) → (𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
205 | 204 | ralrn 6946 |
. . . . 5
⊢ (𝑇 Fn ℕ →
(∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
206 | 40, 203, 205 | 3syl 18 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑘 ∈ ℕ (𝑇‘𝑘) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
207 | 202, 206 | mpbird 256 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) |
208 | | supxrleub 12989 |
. . . 4
⊢ ((ran
𝑇 ⊆
ℝ* ∧ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ∈ ℝ*)
→ (sup(ran 𝑇,
ℝ*, < ) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵) ↔ ∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
209 | 43, 49, 208 | syl2anc 583 |
. . 3
⊢ (𝜑 → (sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran
𝑆, ℝ*,
< ) + 𝐵) ↔
∀𝑦 ∈ ran 𝑇 𝑦 ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵))) |
210 | 207, 209 | mpbird 256 |
. 2
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ (sup(ran
𝑆, ℝ*,
< ) + 𝐵)) |
211 | 7, 45, 49, 111, 210 | xrletrd 12825 |
1
⊢ (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) +
𝐵)) |