MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Visualization version   GIF version

Theorem ovolshftlem1 24578
Description: Lemma for ovolshft 24580. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolshft.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolshft.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
ovolshft.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolshft.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
Assertion
Ref Expression
ovolshftlem1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐶,𝑓,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥   𝑓,𝐺,𝑛,𝑦   𝐵,𝑓,𝑛,𝑦   𝜑,𝑓,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥,𝑦,𝑓,𝑛)   𝐹(𝑦,𝑓)   𝐺(𝑥)   𝑀(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolfcl 24535 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
31, 2sylan 579 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
43simp1d 1140 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
53simp2d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
6 ovolshft.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
76adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
83simp3d 1142 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
94, 5, 7, 8leadd1dd 11519 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶))
10 df-br 5071 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
119, 10sylib 217 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
124, 7readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
135, 7readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
1412, 13opelxpd 5618 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ (ℝ × ℝ))
1511, 14elind 4124 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
16 ovolshft.6 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
1715, 16fmptd 6970 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 eqid 2738 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
1918ovolfsf 24540 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
20 ffn 6584 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
2117, 19, 203syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
22 eqid 2738 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
2322ovolfsf 24540 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
24 ffn 6584 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
251, 23, 243syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
26 opex 5373 . . . . . . . . . . . . . 14 ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V
2716fvmpt2 6868 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2826, 27mpan2 687 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2928fveq2d 6760 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
30 ovex 7288 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛)) + 𝐶) ∈ V
31 ovex 7288 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ V
3230, 31op2nd 7813 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) + 𝐶)
3329, 32eqtrdi 2795 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
3428fveq2d 6760 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
3530, 31op1st 7812 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((1st ‘(𝐹𝑛)) + 𝐶)
3634, 35eqtrdi 2795 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
3733, 36oveq12d 7273 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
3837adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
395recnd 10934 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
404recnd 10934 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
417recnd 10934 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
4239, 40, 41pnpcan2d 11300 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4338, 42eqtrd 2778 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4418ovolfsval 24539 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4517, 44sylan 579 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4622ovolfsval 24539 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
471, 46sylan 579 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4843, 45, 473eqtr4d 2788 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
4921, 25, 48eqfnfvd 6894 . . . . . 6 (𝜑 → ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐹))
5049seqeq3d 13657 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
51 ovolshft.5 . . . . 5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
5250, 51eqtr4di 2797 . . . 4 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = 𝑆)
5352rneqd 5836 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) = ran 𝑆)
5453supeq1d 9135 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
55 ovolshft.3 . . . . . . . . 9 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
5655eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
57 oveq1 7262 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
5857eleq1d 2823 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝐶) ∈ 𝐴 ↔ (𝑦𝐶) ∈ 𝐴))
5958elrab 3617 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
6056, 59bitrdi 286 . . . . . . 7 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)))
6160biimpa 476 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
62 breq2 5074 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
63 breq1 5073 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
6462, 63anbi12d 630 . . . . . . . . 9 (𝑥 = (𝑦𝐶) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
6564rexbidv 3225 . . . . . . . 8 (𝑥 = (𝑦𝐶) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
66 ovolshft.8 . . . . . . . . . 10 (𝜑𝐴 ran ((,) ∘ 𝐹))
67 ovolshft.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
68 ovolfioo 24536 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
6967, 1, 68syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
7066, 69mpbid 231 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
7170adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
72 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (𝑦𝐶) ∈ 𝐴)
7365, 71, 72rspcdva 3554 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
7436adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
7574breq1d 5080 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦))
764adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
776ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
78 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7976, 77, 78ltaddsubd 11505 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8075, 79bitrd 278 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8133adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
8281breq2d 5082 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
835adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
8478, 77, 83ltsubaddd 11501 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑦𝐶) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
8582, 84bitr4d 281 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
8680, 85anbi12d 630 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8786rexbidva 3224 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8873, 87mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8961, 88syldan 590 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
9089ralrimiva 3107 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
91 ssrab2 4009 . . . . . 6 {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ⊆ ℝ
9255, 91eqsstrdi 3971 . . . . 5 (𝜑𝐵 ⊆ ℝ)
93 ovolfioo 24536 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9492, 17, 93syl2anc 583 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9590, 94mpbird 256 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
96 ovolshft.4 . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
97 eqid 2738 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
9896, 97elovolmr 24545 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
9917, 95, 98syl2anc 583 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
10054, 99eqeltrrd 2840 1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  (,)cioo 13008  [,)cico 13010  seqcseq 13649  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  ovolshftlem2  24579
  Copyright terms: Public domain W3C validator