MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Visualization version   GIF version

Theorem ovolshftlem1 25025
Description: Lemma for ovolshft 25027. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolshft.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolshft.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
ovolshft.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolshft.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
Assertion
Ref Expression
ovolshftlem1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐶,𝑓,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥   𝑓,𝐺,𝑛,𝑦   𝐵,𝑓,𝑛,𝑦   𝜑,𝑓,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥,𝑦,𝑓,𝑛)   𝐹(𝑦,𝑓)   𝐺(𝑥)   𝑀(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolfcl 24982 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
31, 2sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
43simp1d 1142 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
53simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
6 ovolshft.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
76adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
83simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
94, 5, 7, 8leadd1dd 11827 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶))
10 df-br 5149 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
119, 10sylib 217 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
124, 7readdcld 11242 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
135, 7readdcld 11242 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
1412, 13opelxpd 5715 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ (ℝ × ℝ))
1511, 14elind 4194 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
16 ovolshft.6 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
1715, 16fmptd 7113 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 eqid 2732 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
1918ovolfsf 24987 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
20 ffn 6717 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
2117, 19, 203syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
22 eqid 2732 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
2322ovolfsf 24987 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
24 ffn 6717 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
251, 23, 243syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
26 opex 5464 . . . . . . . . . . . . . 14 ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V
2716fvmpt2 7009 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2826, 27mpan2 689 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2928fveq2d 6895 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
30 ovex 7441 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛)) + 𝐶) ∈ V
31 ovex 7441 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ V
3230, 31op2nd 7983 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) + 𝐶)
3329, 32eqtrdi 2788 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
3428fveq2d 6895 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
3530, 31op1st 7982 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((1st ‘(𝐹𝑛)) + 𝐶)
3634, 35eqtrdi 2788 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
3733, 36oveq12d 7426 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
3837adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
395recnd 11241 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
404recnd 11241 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
417recnd 11241 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
4239, 40, 41pnpcan2d 11608 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4338, 42eqtrd 2772 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4418ovolfsval 24986 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4517, 44sylan 580 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4622ovolfsval 24986 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
471, 46sylan 580 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4843, 45, 473eqtr4d 2782 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
4921, 25, 48eqfnfvd 7035 . . . . . 6 (𝜑 → ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐹))
5049seqeq3d 13973 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
51 ovolshft.5 . . . . 5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
5250, 51eqtr4di 2790 . . . 4 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = 𝑆)
5352rneqd 5937 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) = ran 𝑆)
5453supeq1d 9440 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
55 ovolshft.3 . . . . . . . . 9 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
5655eleq2d 2819 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
57 oveq1 7415 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
5857eleq1d 2818 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝐶) ∈ 𝐴 ↔ (𝑦𝐶) ∈ 𝐴))
5958elrab 3683 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
6056, 59bitrdi 286 . . . . . . 7 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)))
6160biimpa 477 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
62 breq2 5152 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
63 breq1 5151 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
6462, 63anbi12d 631 . . . . . . . . 9 (𝑥 = (𝑦𝐶) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
6564rexbidv 3178 . . . . . . . 8 (𝑥 = (𝑦𝐶) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
66 ovolshft.8 . . . . . . . . . 10 (𝜑𝐴 ran ((,) ∘ 𝐹))
67 ovolshft.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
68 ovolfioo 24983 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
6967, 1, 68syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
7066, 69mpbid 231 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
7170adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
72 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (𝑦𝐶) ∈ 𝐴)
7365, 71, 72rspcdva 3613 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
7436adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
7574breq1d 5158 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦))
764adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
776ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
78 simplrl 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7976, 77, 78ltaddsubd 11813 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8075, 79bitrd 278 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8133adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
8281breq2d 5160 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
835adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
8478, 77, 83ltsubaddd 11809 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑦𝐶) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
8582, 84bitr4d 281 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
8680, 85anbi12d 631 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8786rexbidva 3176 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8873, 87mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8961, 88syldan 591 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
9089ralrimiva 3146 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
91 ssrab2 4077 . . . . . 6 {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ⊆ ℝ
9255, 91eqsstrdi 4036 . . . . 5 (𝜑𝐵 ⊆ ℝ)
93 ovolfioo 24983 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9492, 17, 93syl2anc 584 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9590, 94mpbird 256 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
96 ovolshft.4 . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
97 eqid 2732 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
9896, 97elovolmr 24992 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
9917, 95, 98syl2anc 584 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
10054, 99eqeltrrd 2834 1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  cin 3947  wss 3948  cop 4634   cuni 4908   class class class wbr 5148  cmpt 5231   × cxp 5674  ran crn 5677  ccom 5680   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  m cmap 8819  supcsup 9434  cr 11108  0cc0 11109  1c1 11110   + caddc 11112  +∞cpnf 11244  *cxr 11246   < clt 11247  cle 11248  cmin 11443  cn 12211  (,)cioo 13323  [,)cico 13325  seqcseq 13965  abscabs 15180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-ioo 13327  df-ico 13329  df-fz 13484  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182
This theorem is referenced by:  ovolshftlem2  25026
  Copyright terms: Public domain W3C validator