MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Visualization version   GIF version

Theorem ovolshftlem1 25360
Description: Lemma for ovolshft 25362. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolshft.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolshft.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
ovolshft.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolshft.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
Assertion
Ref Expression
ovolshftlem1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐶,𝑓,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥   𝑓,𝐺,𝑛,𝑦   𝐵,𝑓,𝑛,𝑦   𝜑,𝑓,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥,𝑦,𝑓,𝑛)   𝐹(𝑦,𝑓)   𝐺(𝑥)   𝑀(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolfcl 25317 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
31, 2sylan 579 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
43simp1d 1139 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
53simp2d 1140 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
6 ovolshft.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
76adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
83simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
94, 5, 7, 8leadd1dd 11825 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶))
10 df-br 5139 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
119, 10sylib 217 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
124, 7readdcld 11240 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
135, 7readdcld 11240 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
1412, 13opelxpd 5705 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ (ℝ × ℝ))
1511, 14elind 4186 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
16 ovolshft.6 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
1715, 16fmptd 7105 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 eqid 2724 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
1918ovolfsf 25322 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
20 ffn 6707 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
2117, 19, 203syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
22 eqid 2724 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
2322ovolfsf 25322 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
24 ffn 6707 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
251, 23, 243syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
26 opex 5454 . . . . . . . . . . . . . 14 ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V
2716fvmpt2 6999 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2826, 27mpan2 688 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2928fveq2d 6885 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
30 ovex 7434 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛)) + 𝐶) ∈ V
31 ovex 7434 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ V
3230, 31op2nd 7977 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) + 𝐶)
3329, 32eqtrdi 2780 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
3428fveq2d 6885 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
3530, 31op1st 7976 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((1st ‘(𝐹𝑛)) + 𝐶)
3634, 35eqtrdi 2780 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
3733, 36oveq12d 7419 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
3837adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
395recnd 11239 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
404recnd 11239 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
417recnd 11239 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
4239, 40, 41pnpcan2d 11606 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4338, 42eqtrd 2764 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4418ovolfsval 25321 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4517, 44sylan 579 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4622ovolfsval 25321 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
471, 46sylan 579 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4843, 45, 473eqtr4d 2774 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
4921, 25, 48eqfnfvd 7025 . . . . . 6 (𝜑 → ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐹))
5049seqeq3d 13971 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
51 ovolshft.5 . . . . 5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
5250, 51eqtr4di 2782 . . . 4 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = 𝑆)
5352rneqd 5927 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) = ran 𝑆)
5453supeq1d 9437 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
55 ovolshft.3 . . . . . . . . 9 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
5655eleq2d 2811 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
57 oveq1 7408 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
5857eleq1d 2810 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝐶) ∈ 𝐴 ↔ (𝑦𝐶) ∈ 𝐴))
5958elrab 3675 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
6056, 59bitrdi 287 . . . . . . 7 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)))
6160biimpa 476 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
62 breq2 5142 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
63 breq1 5141 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
6462, 63anbi12d 630 . . . . . . . . 9 (𝑥 = (𝑦𝐶) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
6564rexbidv 3170 . . . . . . . 8 (𝑥 = (𝑦𝐶) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
66 ovolshft.8 . . . . . . . . . 10 (𝜑𝐴 ran ((,) ∘ 𝐹))
67 ovolshft.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
68 ovolfioo 25318 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
6967, 1, 68syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
7066, 69mpbid 231 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
7170adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
72 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (𝑦𝐶) ∈ 𝐴)
7365, 71, 72rspcdva 3605 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
7436adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
7574breq1d 5148 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦))
764adantlr 712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
776ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
78 simplrl 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7976, 77, 78ltaddsubd 11811 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8075, 79bitrd 279 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8133adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
8281breq2d 5150 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
835adantlr 712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
8478, 77, 83ltsubaddd 11807 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑦𝐶) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
8582, 84bitr4d 282 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
8680, 85anbi12d 630 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8786rexbidva 3168 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8873, 87mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8961, 88syldan 590 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
9089ralrimiva 3138 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
91 ssrab2 4069 . . . . . 6 {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ⊆ ℝ
9255, 91eqsstrdi 4028 . . . . 5 (𝜑𝐵 ⊆ ℝ)
93 ovolfioo 25318 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9492, 17, 93syl2anc 583 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9590, 94mpbird 257 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
96 ovolshft.4 . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
97 eqid 2724 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
9896, 97elovolmr 25327 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
9917, 95, 98syl2anc 583 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
10054, 99eqeltrrd 2826 1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wrex 3062  {crab 3424  Vcvv 3466  cin 3939  wss 3940  cop 4626   cuni 4899   class class class wbr 5138  cmpt 5221   × cxp 5664  ran crn 5667  ccom 5670   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967  m cmap 8816  supcsup 9431  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11242  *cxr 11244   < clt 11245  cle 11246  cmin 11441  cn 12209  (,)cioo 13321  [,)cico 13323  seqcseq 13963  abscabs 15178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ioo 13325  df-ico 13327  df-fz 13482  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180
This theorem is referenced by:  ovolshftlem2  25361
  Copyright terms: Public domain W3C validator