MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Visualization version   GIF version

Theorem ovolshftlem1 25258
Description: Lemma for ovolshft 25260. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolshft.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolshft.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
ovolshft.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolshft.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
Assertion
Ref Expression
ovolshftlem1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝐶,𝑓,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥   𝑓,𝐺,𝑛,𝑦   𝐵,𝑓,𝑛,𝑦   𝜑,𝑓,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥,𝑦,𝑓,𝑛)   𝐹(𝑦,𝑓)   𝐺(𝑥)   𝑀(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolfcl 25215 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
31, 2sylan 578 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
43simp1d 1140 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
53simp2d 1141 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
6 ovolshft.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
76adantr 479 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
83simp3d 1142 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
94, 5, 7, 8leadd1dd 11832 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶))
10 df-br 5148 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) + 𝐶) ≤ ((2nd ‘(𝐹𝑛)) + 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
119, 10sylib 217 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ≤ )
124, 7readdcld 11247 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
135, 7readdcld 11247 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ ℝ)
1412, 13opelxpd 5714 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ (ℝ × ℝ))
1511, 14elind 4193 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
16 ovolshft.6 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
1715, 16fmptd 7114 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 eqid 2730 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
1918ovolfsf 25220 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
20 ffn 6716 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
2117, 19, 203syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐺) Fn ℕ)
22 eqid 2730 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
2322ovolfsf 25220 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
24 ffn 6716 . . . . . . . 8 (((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
251, 23, 243syl 18 . . . . . . 7 (𝜑 → ((abs ∘ − ) ∘ 𝐹) Fn ℕ)
26 opex 5463 . . . . . . . . . . . . . 14 ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V
2716fvmpt2 7008 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2826, 27mpan2 687 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩)
2928fveq2d 6894 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
30 ovex 7444 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑛)) + 𝐶) ∈ V
31 ovex 7444 . . . . . . . . . . . . 13 ((2nd ‘(𝐹𝑛)) + 𝐶) ∈ V
3230, 31op2nd 7986 . . . . . . . . . . . 12 (2nd ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) + 𝐶)
3329, 32eqtrdi 2786 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
3428fveq2d 6894 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩))
3530, 31op1st 7985 . . . . . . . . . . . 12 (1st ‘⟨((1st ‘(𝐹𝑛)) + 𝐶), ((2nd ‘(𝐹𝑛)) + 𝐶)⟩) = ((1st ‘(𝐹𝑛)) + 𝐶)
3634, 35eqtrdi 2786 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
3733, 36oveq12d 7429 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
3837adantl 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)))
395recnd 11246 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
404recnd 11246 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
417recnd 11246 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
4239, 40, 41pnpcan2d 11613 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) + 𝐶) − ((1st ‘(𝐹𝑛)) + 𝐶)) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4338, 42eqtrd 2770 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4418ovolfsval 25219 . . . . . . . . 9 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4517, 44sylan 578 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
4622ovolfsval 25219 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
471, 46sylan 578 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4843, 45, 473eqtr4d 2780 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
4921, 25, 48eqfnfvd 7034 . . . . . 6 (𝜑 → ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐹))
5049seqeq3d 13978 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
51 ovolshft.5 . . . . 5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
5250, 51eqtr4di 2788 . . . 4 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) = 𝑆)
5352rneqd 5936 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) = ran 𝑆)
5453supeq1d 9443 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
55 ovolshft.3 . . . . . . . . 9 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
5655eleq2d 2817 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
57 oveq1 7418 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
5857eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝐶) ∈ 𝐴 ↔ (𝑦𝐶) ∈ 𝐴))
5958elrab 3682 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
6056, 59bitrdi 286 . . . . . . 7 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)))
6160biimpa 475 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴))
62 breq2 5151 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
63 breq1 5150 . . . . . . . . . 10 (𝑥 = (𝑦𝐶) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
6462, 63anbi12d 629 . . . . . . . . 9 (𝑥 = (𝑦𝐶) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
6564rexbidv 3176 . . . . . . . 8 (𝑥 = (𝑦𝐶) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
66 ovolshft.8 . . . . . . . . . 10 (𝜑𝐴 ran ((,) ∘ 𝐹))
67 ovolshft.1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
68 ovolfioo 25216 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
6967, 1, 68syl2anc 582 . . . . . . . . . 10 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
7066, 69mpbid 231 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
7170adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
72 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (𝑦𝐶) ∈ 𝐴)
7365, 71, 72rspcdva 3612 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
7436adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) + 𝐶))
7574breq1d 5157 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦))
764adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
776ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
78 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7976, 77, 78ltaddsubd 11818 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) + 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8075, 79bitrd 278 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝑦𝐶)))
8133adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) + 𝐶))
8281breq2d 5159 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
835adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
8478, 77, 83ltsubaddd 11814 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑦𝐶) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) + 𝐶)))
8582, 84bitr4d 281 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ (𝑦𝐶) < (2nd ‘(𝐹𝑛))))
8680, 85anbi12d 629 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8786rexbidva 3174 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝑦𝐶) ∧ (𝑦𝐶) < (2nd ‘(𝐹𝑛)))))
8873, 87mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝑦𝐶) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8961, 88syldan 589 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
9089ralrimiva 3144 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
91 ssrab2 4076 . . . . . 6 {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ⊆ ℝ
9255, 91eqsstrdi 4035 . . . . 5 (𝜑𝐵 ⊆ ℝ)
93 ovolfioo 25216 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9492, 17, 93syl2anc 582 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9590, 94mpbird 256 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
96 ovolshft.4 . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
97 eqid 2730 . . . 4 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
9896, 97elovolmr 25225 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
9917, 95, 98syl2anc 582 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ 𝑀)
10054, 99eqeltrrd 2832 1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068  {crab 3430  Vcvv 3472  cin 3946  wss 3947  cop 4633   cuni 4907   class class class wbr 5147  cmpt 5230   × cxp 5673  ran crn 5676  ccom 5679   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  m cmap 8822  supcsup 9437  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  cmin 11448  cn 12216  (,)cioo 13328  [,)cico 13330  seqcseq 13970  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-ioo 13332  df-ico 13334  df-fz 13489  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187
This theorem is referenced by:  ovolshftlem2  25259
  Copyright terms: Public domain W3C validator