MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem1 Structured version   Visualization version   GIF version

Theorem ovolscalem1 25421
Description: Lemma for ovolsca 25423. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
ovolsca.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolsca.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
ovolsca.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolsca.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
ovolsca.9 (𝜑𝑅 ∈ ℝ+)
ovolsca.10 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
Assertion
Ref Expression
ovolscalem1 (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛   𝑛,𝐹,𝑥   𝑛,𝐺   𝑥,𝑅   𝐶,𝑛,𝑥   𝜑,𝑛   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑛)   𝑆(𝑛)   𝐺(𝑥)

Proof of Theorem ovolscalem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.3 . . . 4 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
2 ssrab2 4046 . . . 4 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
31, 2eqsstrdi 3994 . . 3 (𝜑𝐵 ⊆ ℝ)
4 ovolcl 25386 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
6 ovolsca.7 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
7 ovolfcl 25374 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
86, 7sylan 580 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
98simp3d 1144 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
108simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
118simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
12 ovolsca.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ+)
1312rpregt0d 13008 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
15 lediv1 12055 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶)))
1610, 11, 14, 15syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶)))
179, 16mpbid 232 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶))
18 df-br 5111 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ≤ )
1917, 18sylib 218 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ≤ )
2012adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ+)
2110, 20rerpdivcld 13033 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) / 𝐶) ∈ ℝ)
2211, 20rerpdivcld 13033 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) / 𝐶) ∈ ℝ)
2321, 22opelxpd 5680 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ (ℝ × ℝ))
2419, 23elind 4166 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
25 ovolsca.6 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
2624, 25fmptd 7089 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
27 eqid 2730 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
28 eqid 2730 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2927, 28ovolsf 25380 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
3026, 29syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
3130frnd 6699 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
32 icossxr 13400 . . . 4 (0[,)+∞) ⊆ ℝ*
3331, 32sstrdi 3962 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
34 supxrcl 13282 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3533, 34syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
36 ovolsca.4 . . . . 5 (𝜑 → (vol*‘𝐴) ∈ ℝ)
3736, 12rerpdivcld 13033 . . . 4 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
38 ovolsca.9 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3938rpred 13002 . . . 4 (𝜑𝑅 ∈ ℝ)
4037, 39readdcld 11210 . . 3 (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ)
4140rexrd 11231 . 2 (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*)
421eleq2d 2815 . . . . . . 7 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
43 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
4443eleq1d 2814 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · 𝑦) ∈ 𝐴))
4544elrab 3662 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴))
4642, 45bitrdi 287 . . . . . 6 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)))
47 breq2 5114 . . . . . . . . . . 11 (𝑥 = (𝐶 · 𝑦) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
48 breq1 5113 . . . . . . . . . . 11 (𝑥 = (𝐶 · 𝑦) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))))
4947, 48anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐶 · 𝑦) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)))))
5049rexbidv 3158 . . . . . . . . 9 (𝑥 = (𝐶 · 𝑦) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)))))
51 ovolsca.8 . . . . . . . . . . 11 (𝜑𝐴 ran ((,) ∘ 𝐹))
52 ovolsca.1 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
53 ovolfioo 25375 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
5452, 6, 53syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
5551, 54mpbid 232 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
5655adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
57 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (𝐶 · 𝑦) ∈ 𝐴)
5850, 56, 57rspcdva 3592 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))))
59 opex 5427 . . . . . . . . . . . . . . . 16 ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ V
6025fvmpt2 6982 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
6159, 60mpan2 691 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
6261fveq2d 6865 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩))
63 ovex 7423 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) / 𝐶) ∈ V
64 ovex 7423 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) / 𝐶) ∈ V
6563, 64op1st 7979 . . . . . . . . . . . . . 14 (1st ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩) = ((1st ‘(𝐹𝑛)) / 𝐶)
6662, 65eqtrdi 2781 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) / 𝐶))
6766adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) / 𝐶))
6867breq1d 5120 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦))
6910adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
70 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7114adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
72 ltdivmul 12065 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
7369, 70, 71, 72syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
7468, 73bitr2d 280 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ↔ (1st ‘(𝐺𝑛)) < 𝑦))
7511adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
76 ltmuldiv2 12064 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
7770, 75, 71, 76syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
7861fveq2d 6865 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩))
7963, 64op2nd 7980 . . . . . . . . . . . . . 14 (2nd ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) / 𝐶)
8078, 79eqtrdi 2781 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) / 𝐶))
8180adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) / 𝐶))
8281breq2d 5122 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
8377, 82bitr4d 282 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < (2nd ‘(𝐺𝑛))))
8474, 83anbi12d 632 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8584rexbidva 3156 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8658, 85mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8786ex 412 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8846, 87sylbid 240 . . . . 5 (𝜑 → (𝑦𝐵 → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8988ralrimiv 3125 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
90 ovolfioo 25375 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
913, 26, 90syl2anc 584 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9289, 91mpbird 257 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
9328ovollb 25387 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
9426, 92, 93syl2anc 584 . 2 (𝜑 → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
95 fzfid 13945 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
9612rpcnd 13004 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
9796adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
98 simpl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝜑)
99 elfznn 13521 . . . . . . . . . 10 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
10011, 10resubcld 11613 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
10198, 99, 100syl2an 596 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
102101recnd 11209 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℂ)
10312rpne0d 13007 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
104103adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
10595, 97, 102, 104fsumdivc 15759 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
10680, 66oveq12d 7408 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
107106adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
10827ovolfsval 25378 . . . . . . . . . . 11 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
10926, 108sylan 580 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
11011recnd 11209 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
11110recnd 11209 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
11212rpcnne0d 13011 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
113112adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
114 divsubdir 11883 . . . . . . . . . . 11 (((2nd ‘(𝐹𝑛)) ∈ ℂ ∧ (1st ‘(𝐹𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
115110, 111, 113, 114syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
116107, 109, 1153eqtr4d 2775 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
11798, 99, 116syl2an 596 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
118 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
119 nnuz 12843 . . . . . . . . 9 ℕ = (ℤ‘1)
120118, 119eleqtrdi 2839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
121100, 20rerpdivcld 13033 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℝ)
122121recnd 11209 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℂ)
12398, 99, 122syl2an 596 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℂ)
124117, 120, 123fsumser 15703 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
125105, 124eqtrd 2765 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
126 ovolsca.10 . . . . . . . . . . 11 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
127 eqid 2730 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
128 ovolsca.5 . . . . . . . . . . . . . . . 16 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
129127, 128ovolsf 25380 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1306, 129syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆:ℕ⟶(0[,)+∞))
131130frnd 6699 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
132131, 32sstrdi 3962 . . . . . . . . . . . 12 (𝜑 → ran 𝑆 ⊆ ℝ*)
13312, 38rpmulcld 13018 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 𝑅) ∈ ℝ+)
134133rpred 13002 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝑅) ∈ ℝ)
13536, 134readdcld 11210 . . . . . . . . . . . . 13 (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ)
136135rexrd 11231 . . . . . . . . . . . 12 (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*)
137 supxrleub 13293 . . . . . . . . . . . 12 ((ran 𝑆 ⊆ ℝ* ∧ ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
138132, 136, 137syl2anc 584 . . . . . . . . . . 11 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
139126, 138mpbid 232 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
140130ffnd 6692 . . . . . . . . . . 11 (𝜑𝑆 Fn ℕ)
141 breq1 5113 . . . . . . . . . . . 12 (𝑥 = (𝑆𝑘) → (𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
142141ralrn 7063 . . . . . . . . . . 11 (𝑆 Fn ℕ → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
143140, 142syl 17 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
144139, 143mpbid 232 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
145144r19.21bi 3230 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
1466adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
147127ovolfsval 25378 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
148146, 99, 147syl2an 596 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
149148, 120, 102fsumser 15703 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
150128fveq1i 6862 . . . . . . . . 9 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
151149, 150eqtr4di 2783 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) = (𝑆𝑘))
15237recnd 11209 . . . . . . . . . . 11 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℂ)
15338rpcnd 13004 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
15496, 152, 153adddid 11205 . . . . . . . . . 10 (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)))
15536recnd 11209 . . . . . . . . . . . 12 (𝜑 → (vol*‘𝐴) ∈ ℂ)
156155, 96, 103divcan2d 11967 . . . . . . . . . . 11 (𝜑 → (𝐶 · ((vol*‘𝐴) / 𝐶)) = (vol*‘𝐴))
157156oveq1d 7405 . . . . . . . . . 10 (𝜑 → ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
158154, 157eqtrd 2765 . . . . . . . . 9 (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
159158adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
160145, 151, 1593brtr4d 5142 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))
16195, 101fsumrecl 15707 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
16240adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ)
16313adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
164 ledivmul 12066 . . . . . . . 8 ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ ∧ (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))))
165161, 162, 163, 164syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))))
166160, 165mpbird 257 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
167125, 166eqbrtrrd 5134 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
168167ralrimiva 3126 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
16930ffnd 6692 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
170 breq1 5113 . . . . . 6 (𝑦 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) → (𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
171170ralrn 7063 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
172169, 171syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
173168, 172mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
174 supxrleub 13293 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
17533, 41, 174syl2anc 584 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
176173, 175mpbird 257 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
1775, 35, 41, 94, 176xrletrd 13129 1 (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  cop 4598   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cuz 12800  +crp 12958  (,)cioo 13313  [,)cico 13315  ...cfz 13475  seqcseq 13973  abscabs 15207  Σcsu 15659  vol*covol 25370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-ovol 25372
This theorem is referenced by:  ovolscalem2  25422
  Copyright terms: Public domain W3C validator