Step | Hyp | Ref
| Expression |
1 | | ovolsca.3 |
. . . 4
⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
2 | | ssrab2 4014 |
. . . 4
⊢ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ |
3 | 1, 2 | eqsstrdi 3976 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
4 | | ovolcl 24651 |
. . 3
⊢ (𝐵 ⊆ ℝ →
(vol*‘𝐵) ∈
ℝ*) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ*) |
6 | | ovolsca.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
7 | | ovolfcl 24639 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
8 | 6, 7 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
9 | 8 | simp3d 1143 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
10 | 8 | simp1d 1141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
11 | 8 | simp2d 1142 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
12 | | ovolsca.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
13 | 12 | rpregt0d 12787 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
15 | | lediv1 11849 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)) ↔ ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
16 | 10, 11, 14, 15 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)) ↔ ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
17 | 9, 16 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶)) |
18 | | df-br 5076 |
. . . . . . . . 9
⊢
(((1st ‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶) ↔ 〈((1st
‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ≤ ) |
19 | 17, 18 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ≤ ) |
20 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈
ℝ+) |
21 | 10, 20 | rerpdivcld 12812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ) |
22 | 11, 20 | rerpdivcld 12812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ) |
23 | 21, 22 | opelxpd 5628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ (ℝ ×
ℝ)) |
24 | 19, 23 | elind 4129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
25 | | ovolsca.6 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
26 | 24, 25 | fmptd 6997 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
27 | | eqid 2739 |
. . . . . . 7
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
28 | | eqid 2739 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − )
∘ 𝐺)) |
29 | 27, 28 | ovolsf 24645 |
. . . . . 6
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝐺)):ℕ⟶(0[,)+∞)) |
30 | 26, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)):ℕ⟶(0[,)+∞)) |
31 | 30 | frnd 6617 |
. . . 4
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞)) |
32 | | icossxr 13173 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ* |
33 | 31, 32 | sstrdi 3934 |
. . 3
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆
ℝ*) |
34 | | supxrcl 13058 |
. . 3
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* →
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
35 | 33, 34 | syl 17 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
36 | | ovolsca.4 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
37 | 36, 12 | rerpdivcld 12812 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ) |
38 | | ovolsca.9 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
39 | 38 | rpred 12781 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℝ) |
40 | 37, 39 | readdcld 11013 |
. . 3
⊢ (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ) |
41 | 40 | rexrd 11034 |
. 2
⊢ (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈
ℝ*) |
42 | 1 | eleq2d 2825 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})) |
43 | | oveq2 7292 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) |
44 | 43 | eleq1d 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · 𝑦) ∈ 𝐴)) |
45 | 44 | elrab 3625 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) |
46 | 42, 45 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴))) |
47 | | breq2 5079 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐶 · 𝑦) → ((1st ‘(𝐹‘𝑛)) < 𝑥 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
48 | | breq1 5078 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐶 · 𝑦) → (𝑥 < (2nd ‘(𝐹‘𝑛)) ↔ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)))) |
49 | 47, 48 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐶 · 𝑦) → (((1st ‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) ↔ ((1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))))) |
50 | 49 | rexbidv 3227 |
. . . . . . . . 9
⊢ (𝑥 = (𝐶 · 𝑦) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))))) |
51 | | ovolsca.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐹)) |
52 | | ovolsca.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
53 | | ovolfioo 24640 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
54 | 52, 6, 53 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
55 | 51, 54 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
56 | 55 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
57 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (𝐶 · 𝑦) ∈ 𝐴) |
58 | 50, 56, 57 | rspcdva 3563 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)))) |
59 | | opex 5380 |
. . . . . . . . . . . . . . . 16
⊢
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ V |
60 | 25 | fvmpt2 6895 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ V) → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
61 | 59, 60 | mpan2 688 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
62 | 61 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = (1st
‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉)) |
63 | | ovex 7317 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(𝐹‘𝑛)) / 𝐶) ∈ V |
64 | | ovex 7317 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘(𝐹‘𝑛)) / 𝐶) ∈ V |
65 | 63, 64 | op1st 7848 |
. . . . . . . . . . . . . 14
⊢
(1st ‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) = ((1st ‘(𝐹‘𝑛)) / 𝐶) |
66 | 62, 65 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = ((1st ‘(𝐹‘𝑛)) / 𝐶)) |
67 | 66 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = ((1st
‘(𝐹‘𝑛)) / 𝐶)) |
68 | 67 | breq1d 5085 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐺‘𝑛)) < 𝑦 ↔ ((1st ‘(𝐹‘𝑛)) / 𝐶) < 𝑦)) |
69 | 10 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
70 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ) |
71 | 14 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
72 | | ltdivmul 11859 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((1st
‘(𝐹‘𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
73 | 69, 70, 71, 72 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
74 | 68, 73 | bitr2d 279 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ↔ (1st ‘(𝐺‘𝑛)) < 𝑦)) |
75 | 11 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
76 | | ltmuldiv2 11858 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
77 | 70, 75, 71, 76 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
78 | 61 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = (2nd
‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉)) |
79 | 63, 64 | op2nd 7849 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) = ((2nd ‘(𝐹‘𝑛)) / 𝐶) |
80 | 78, 79 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = ((2nd ‘(𝐹‘𝑛)) / 𝐶)) |
81 | 80 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = ((2nd
‘(𝐹‘𝑛)) / 𝐶)) |
82 | 81 | breq2d 5087 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
83 | 77, 82 | bitr4d 281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
84 | 74, 83 | anbi12d 631 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))) ↔ ((1st ‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
85 | 84 | rexbidva 3226 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
86 | 58, 85 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
87 | 86 | ex 413 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
88 | 46, 87 | sylbid 239 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
89 | 88 | ralrimiv 3103 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
90 | | ovolfioo 24640 |
. . . . 5
⊢ ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
91 | 3, 26, 90 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
92 | 89, 91 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) |
93 | 28 | ovollb 24652 |
. . 3
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) →
(vol*‘𝐵) ≤ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, <
)) |
94 | 26, 92, 93 | syl2anc 584 |
. 2
⊢ (𝜑 → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, <
)) |
95 | | fzfid 13702 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
96 | 12 | rpcnd 12783 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
97 | 96 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℂ) |
98 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝜑) |
99 | | elfznn 13294 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
100 | 11, 10 | resubcld 11412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) ∈
ℝ) |
101 | 98, 99, 100 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℝ) |
102 | 101 | recnd 11012 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℂ) |
103 | 12 | rpne0d 12786 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ≠ 0) |
104 | 103 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ≠ 0) |
105 | 95, 97, 102, 104 | fsumdivc 15507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
106 | 80, 66 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛))) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
107 | 106 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) − (1st
‘(𝐺‘𝑛))) = (((2nd
‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
108 | 27 | ovolfsval 24643 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
109 | 26, 108 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
110 | 11 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℂ) |
111 | 10 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℂ) |
112 | 12 | rpcnne0d 12790 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
113 | 112 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
114 | | divsubdir 11678 |
. . . . . . . . . . 11
⊢
(((2nd ‘(𝐹‘𝑛)) ∈ ℂ ∧ (1st
‘(𝐹‘𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) →
(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
115 | 110, 111,
113, 114 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
116 | 107, 109,
115 | 3eqtr4d 2789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
117 | 98, 99, 116 | syl2an 596 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑛) = (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
118 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
119 | | nnuz 12630 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
120 | 118, 119 | eleqtrdi 2850 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
121 | 100, 20 | rerpdivcld 12812 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) ∈ ℝ) |
122 | 121 | recnd 11012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) ∈ ℂ) |
123 | 98, 99, 122 | syl2an 596 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ∈ ℂ) |
124 | 117, 120,
123 | fsumser 15451 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
125 | 105, 124 | eqtrd 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
126 | | ovolsca.10 |
. . . . . . . . . . 11
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑅))) |
127 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
128 | | ovolsca.5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
129 | 127, 128 | ovolsf 24645 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
130 | 6, 129 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
131 | 130 | frnd 6617 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
132 | 131, 32 | sstrdi 3934 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
133 | 12, 38 | rpmulcld 12797 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 · 𝑅) ∈
ℝ+) |
134 | 133 | rpred 12781 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶 · 𝑅) ∈ ℝ) |
135 | 36, 134 | readdcld 11013 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ) |
136 | 135 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈
ℝ*) |
137 | | supxrleub 13069 |
. . . . . . . . . . . 12
⊢ ((ran
𝑆 ⊆
ℝ* ∧ ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*) →
(sup(ran 𝑆,
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
138 | 132, 136,
137 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
139 | 126, 138 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
140 | 130 | ffnd 6610 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 Fn ℕ) |
141 | | breq1 5078 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑆‘𝑘) → (𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
142 | 141 | ralrn 6973 |
. . . . . . . . . . 11
⊢ (𝑆 Fn ℕ →
(∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
143 | 140, 142 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
144 | 139, 143 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
145 | 144 | r19.21bi 3135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
146 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
147 | 127 | ovolfsval 24643 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
148 | 146, 99, 147 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
149 | 148, 120,
102 | fsumser 15451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘)) |
150 | 128 | fveq1i 6784 |
. . . . . . . . 9
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
151 | 149, 150 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) = (𝑆‘𝑘)) |
152 | 37 | recnd 11012 |
. . . . . . . . . . 11
⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℂ) |
153 | 38 | rpcnd 12783 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℂ) |
154 | 96, 152, 153 | adddid 11008 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅))) |
155 | 36 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (𝜑 → (vol*‘𝐴) ∈
ℂ) |
156 | 155, 96, 103 | divcan2d 11762 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 · ((vol*‘𝐴) / 𝐶)) = (vol*‘𝐴)) |
157 | 156 | oveq1d 7299 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
158 | 154, 157 | eqtrd 2779 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
159 | 158 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
160 | 145, 151,
159 | 3brtr4d 5107 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))) |
161 | 95, 101 | fsumrecl 15455 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℝ) |
162 | 40 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ) |
163 | 13 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
164 | | ledivmul 11860 |
. . . . . . . 8
⊢
((Σ𝑛 ∈
(1...𝑘)((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) ∈ ℝ ∧
(((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))) |
165 | 161, 162,
163, 164 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))) |
166 | 160, 165 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
167 | 125, 166 | eqbrtrrd 5099 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
168 | 167 | ralrimiva 3104 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
169 | 30 | ffnd 6610 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)) Fn
ℕ) |
170 | | breq1 5078 |
. . . . . 6
⊢ (𝑦 = (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) → (𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
171 | 170 | ralrn 6973 |
. . . . 5
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑦 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
172 | 169, 171 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
173 | 168, 172 | mpbird 256 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
174 | | supxrleub 13069 |
. . . 4
⊢ ((ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧
(((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*) →
(sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
175 | 33, 41, 174 | syl2anc 584 |
. . 3
⊢ (𝜑 → (sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
176 | 173, 175 | mpbird 256 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅)) |
177 | 5, 35, 41, 94, 176 | xrletrd 12905 |
1
⊢ (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |