MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem1 Structured version   Visualization version   GIF version

Theorem ovolscalem1 24582
Description: Lemma for ovolsca 24584. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
ovolsca.4 (𝜑 → (vol*‘𝐴) ∈ ℝ)
ovolsca.5 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolsca.6 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
ovolsca.7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolsca.8 (𝜑𝐴 ran ((,) ∘ 𝐹))
ovolsca.9 (𝜑𝑅 ∈ ℝ+)
ovolsca.10 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
Assertion
Ref Expression
ovolscalem1 (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛   𝑛,𝐹,𝑥   𝑛,𝐺   𝑥,𝑅   𝐶,𝑛,𝑥   𝜑,𝑛   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑛)   𝑆(𝑛)   𝐺(𝑥)

Proof of Theorem ovolscalem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.3 . . . 4 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
2 ssrab2 4009 . . . 4 {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ
31, 2eqsstrdi 3971 . . 3 (𝜑𝐵 ⊆ ℝ)
4 ovolcl 24547 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → (vol*‘𝐵) ∈ ℝ*)
6 ovolsca.7 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
7 ovolfcl 24535 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
86, 7sylan 579 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
98simp3d 1142 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
108simp1d 1140 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
118simp2d 1141 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
12 ovolsca.2 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ+)
1312rpregt0d 12707 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
15 lediv1 11770 . . . . . . . . . . 11 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶)))
1610, 11, 14, 15syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶)))
179, 16mpbid 231 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶))
18 df-br 5071 . . . . . . . . 9 (((1st ‘(𝐹𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹𝑛)) / 𝐶) ↔ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ≤ )
1917, 18sylib 217 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ≤ )
2012adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ+)
2110, 20rerpdivcld 12732 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) / 𝐶) ∈ ℝ)
2211, 20rerpdivcld 12732 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) / 𝐶) ∈ ℝ)
2321, 22opelxpd 5618 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ (ℝ × ℝ))
2419, 23elind 4124 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
25 ovolsca.6 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
2624, 25fmptd 6970 . . . . . 6 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
27 eqid 2738 . . . . . . 7 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
28 eqid 2738 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − ) ∘ 𝐺))
2927, 28ovolsf 24541 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
3026, 29syl 17 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞))
3130frnd 6592 . . . 4 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞))
32 icossxr 13093 . . . 4 (0[,)+∞) ⊆ ℝ*
3331, 32sstrdi 3929 . . 3 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ*)
34 supxrcl 12978 . . 3 (ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
3533, 34syl 17 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈ ℝ*)
36 ovolsca.4 . . . . 5 (𝜑 → (vol*‘𝐴) ∈ ℝ)
3736, 12rerpdivcld 12732 . . . 4 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ)
38 ovolsca.9 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3938rpred 12701 . . . 4 (𝜑𝑅 ∈ ℝ)
4037, 39readdcld 10935 . . 3 (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ)
4140rexrd 10956 . 2 (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*)
421eleq2d 2824 . . . . . . 7 (𝜑 → (𝑦𝐵𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
43 oveq2 7263 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
4443eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · 𝑦) ∈ 𝐴))
4544elrab 3617 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴))
4642, 45bitrdi 286 . . . . . 6 (𝜑 → (𝑦𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)))
47 breq2 5074 . . . . . . . . . . 11 (𝑥 = (𝐶 · 𝑦) → ((1st ‘(𝐹𝑛)) < 𝑥 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
48 breq1 5073 . . . . . . . . . . 11 (𝑥 = (𝐶 · 𝑦) → (𝑥 < (2nd ‘(𝐹𝑛)) ↔ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))))
4947, 48anbi12d 630 . . . . . . . . . 10 (𝑥 = (𝐶 · 𝑦) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)))))
5049rexbidv 3225 . . . . . . . . 9 (𝑥 = (𝐶 · 𝑦) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)))))
51 ovolsca.8 . . . . . . . . . . 11 (𝜑𝐴 ran ((,) ∘ 𝐹))
52 ovolsca.1 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
53 ovolfioo 24536 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
5452, 6, 53syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
5551, 54mpbid 231 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
5655adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
57 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (𝐶 · 𝑦) ∈ 𝐴)
5850, 56, 57rspcdva 3554 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))))
59 opex 5373 . . . . . . . . . . . . . . . 16 ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ V
6025fvmpt2 6868 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
6159, 60mpan2 687 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩)
6261fveq2d 6760 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩))
63 ovex 7288 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) / 𝐶) ∈ V
64 ovex 7288 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) / 𝐶) ∈ V
6563, 64op1st 7812 . . . . . . . . . . . . . 14 (1st ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩) = ((1st ‘(𝐹𝑛)) / 𝐶)
6662, 65eqtrdi 2795 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) / 𝐶))
6766adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) / 𝐶))
6867breq1d 5080 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < 𝑦 ↔ ((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦))
6910adantlr 711 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
70 simplrl 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ)
7114adantlr 711 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
72 ltdivmul 11780 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
7369, 70, 71, 72syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹𝑛)) < (𝐶 · 𝑦)))
7468, 73bitr2d 279 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ↔ (1st ‘(𝐺𝑛)) < 𝑦))
7511adantlr 711 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
76 ltmuldiv2 11779 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
7770, 75, 71, 76syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
7861fveq2d 6760 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩))
7963, 64op2nd 7813 . . . . . . . . . . . . . 14 (2nd ‘⟨((1st ‘(𝐹𝑛)) / 𝐶), ((2nd ‘(𝐹𝑛)) / 𝐶)⟩) = ((2nd ‘(𝐹𝑛)) / 𝐶)
8078, 79eqtrdi 2795 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) / 𝐶))
8180adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = ((2nd ‘(𝐹𝑛)) / 𝐶))
8281breq2d 5082 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹𝑛)) / 𝐶)))
8377, 82bitr4d 281 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹𝑛)) ↔ 𝑦 < (2nd ‘(𝐺𝑛))))
8474, 83anbi12d 630 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))) ↔ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8584rexbidva 3224 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8658, 85mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
8786ex 412 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8846, 87sylbid 239 . . . . 5 (𝜑 → (𝑦𝐵 → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
8988ralrimiv 3106 . . . 4 (𝜑 → ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛))))
90 ovolfioo 24536 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
913, 26, 90syl2anc 583 . . . 4 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑦𝐵𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) < 𝑦𝑦 < (2nd ‘(𝐺𝑛)))))
9289, 91mpbird 256 . . 3 (𝜑𝐵 ran ((,) ∘ 𝐺))
9328ovollb 24548 . . 3 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐵 ran ((,) ∘ 𝐺)) → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
9426, 92, 93syl2anc 583 . 2 (𝜑 → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ))
95 fzfid 13621 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
9612rpcnd 12703 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
9796adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
98 simpl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝜑)
99 elfznn 13214 . . . . . . . . . 10 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
10011, 10resubcld 11333 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
10198, 99, 100syl2an 595 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
102101recnd 10934 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℂ)
10312rpne0d 12706 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
104103adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
10595, 97, 102, 104fsumdivc 15426 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
10680, 66oveq12d 7273 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
107106adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
10827ovolfsval 24539 . . . . . . . . . . 11 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
10926, 108sylan 579 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
11011recnd 10934 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℂ)
11110recnd 10934 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℂ)
11212rpcnne0d 12710 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
113112adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
114 divsubdir 11599 . . . . . . . . . . 11 (((2nd ‘(𝐹𝑛)) ∈ ℂ ∧ (1st ‘(𝐹𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
115110, 111, 113, 114syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (((2nd ‘(𝐹𝑛)) / 𝐶) − ((1st ‘(𝐹𝑛)) / 𝐶)))
116107, 109, 1153eqtr4d 2788 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
11798, 99, 116syl2an 595 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶))
118 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
119 nnuz 12550 . . . . . . . . 9 ℕ = (ℤ‘1)
120118, 119eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
121100, 20rerpdivcld 12732 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℝ)
122121recnd 10934 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℂ)
12398, 99, 122syl2an 595 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ∈ ℂ)
124117, 120, 123fsumser 15370 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
125105, 124eqtrd 2778 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘))
126 ovolsca.10 . . . . . . . . . . 11 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
127 eqid 2738 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
128 ovolsca.5 . . . . . . . . . . . . . . . 16 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
129127, 128ovolsf 24541 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1306, 129syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆:ℕ⟶(0[,)+∞))
131130frnd 6592 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
132131, 32sstrdi 3929 . . . . . . . . . . . 12 (𝜑 → ran 𝑆 ⊆ ℝ*)
13312, 38rpmulcld 12717 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 𝑅) ∈ ℝ+)
134133rpred 12701 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝑅) ∈ ℝ)
13536, 134readdcld 10935 . . . . . . . . . . . . 13 (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ)
136135rexrd 10956 . . . . . . . . . . . 12 (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*)
137 supxrleub 12989 . . . . . . . . . . . 12 ((ran 𝑆 ⊆ ℝ* ∧ ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
138132, 136, 137syl2anc 583 . . . . . . . . . . 11 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
139126, 138mpbid 231 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
140130ffnd 6585 . . . . . . . . . . 11 (𝜑𝑆 Fn ℕ)
141 breq1 5073 . . . . . . . . . . . 12 (𝑥 = (𝑆𝑘) → (𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
142141ralrn 6946 . . . . . . . . . . 11 (𝑆 Fn ℕ → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
143140, 142syl 17 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))))
144139, 143mpbid 231 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
145144r19.21bi 3132 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))
1466adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
147127ovolfsval 24539 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
148146, 99, 147syl2an 595 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
149148, 120, 102fsumser 15370 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘))
150128fveq1i 6757 . . . . . . . . 9 (𝑆𝑘) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑘)
151149, 150eqtr4di 2797 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) = (𝑆𝑘))
15237recnd 10934 . . . . . . . . . . 11 (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℂ)
15338rpcnd 12703 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
15496, 152, 153adddid 10930 . . . . . . . . . 10 (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)))
15536recnd 10934 . . . . . . . . . . . 12 (𝜑 → (vol*‘𝐴) ∈ ℂ)
156155, 96, 103divcan2d 11683 . . . . . . . . . . 11 (𝜑 → (𝐶 · ((vol*‘𝐴) / 𝐶)) = (vol*‘𝐴))
157156oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
158154, 157eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
159158adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅)))
160145, 151, 1593brtr4d 5102 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))
16195, 101fsumrecl 15374 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ)
16240adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ)
16313adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
164 ledivmul 11781 . . . . . . . 8 ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ∈ ℝ ∧ (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))))
165161, 162, 163, 164syl3anc 1369 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))))
166160, 165mpbird 256 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
167125, 166eqbrtrrd 5094 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
168167ralrimiva 3107 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
16930ffnd 6585 . . . . 5 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ)
170 breq1 5073 . . . . . 6 (𝑦 = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) → (𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
171170ralrn 6946 . . . . 5 (seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
172169, 171syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
173168, 172mpbird 256 . . 3 (𝜑 → ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
174 supxrleub 12989 . . . 4 ((ran seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧ (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
17533, 41, 174syl2anc 583 . . 3 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)))
176173, 175mpbird 256 . 2 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
1775, 35, 41, 94, 176xrletrd 12825 1 (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  ...cfz 13168  seqcseq 13649  abscabs 14873  Σcsu 15325  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ovol 24533
This theorem is referenced by:  ovolscalem2  24583
  Copyright terms: Public domain W3C validator