Proof of Theorem ioombl1lem3
| Step | Hyp | Ref
| Expression |
| 1 | | ioombl1.q |
. . . . 5
⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
| 2 | | ioombl1.f1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 3 | | ovolfcl 25419 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 4 | 2, 3 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 5 | 4 | simp2d 1143 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
| 6 | 1, 5 | eqeltrid 2838 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) |
| 7 | 6 | recnd 11263 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℂ) |
| 8 | | ioombl1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 10 | | ioombl1.p |
. . . . . . 7
⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
| 11 | 4 | simp1d 1142 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
| 12 | 10, 11 | eqeltrid 2838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) |
| 13 | 9, 12 | ifcld 4547 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) |
| 14 | 13, 6 | ifcld 4547 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) |
| 15 | 14 | recnd 11263 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℂ) |
| 16 | 12 | recnd 11263 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℂ) |
| 17 | 7, 15, 16 | npncand 11618 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑄 − if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)) = (𝑄 − 𝑃)) |
| 18 | | ioombl1.b |
. . . . . . 7
⊢ 𝐵 = (𝐴(,)+∞) |
| 19 | | ioombl1.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ⊆ ℝ) |
| 20 | | ioombl1.v |
. . . . . . 7
⊢ (𝜑 → (vol*‘𝐸) ∈
ℝ) |
| 21 | | ioombl1.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 22 | | ioombl1.s |
. . . . . . 7
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 23 | | ioombl1.t |
. . . . . . 7
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
| 24 | | ioombl1.u |
. . . . . . 7
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
| 25 | | ioombl1.f2 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ⊆ ∪ ran
((,) ∘ 𝐹)) |
| 26 | | ioombl1.f3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐸) + 𝐶)) |
| 27 | | ioombl1.g |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 28 | | ioombl1.h |
. . . . . . 7
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 29 | 18, 8, 19, 20, 21, 22, 23, 24, 2, 25, 26, 10, 1, 27, 28 | ioombl1lem1 25511 |
. . . . . 6
⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |
| 30 | 29 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 31 | | eqid 2735 |
. . . . . 6
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
| 32 | 31 | ovolfsval 25423 |
. . . . 5
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
| 33 | 30, 32 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
| 34 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 35 | | opex 5439 |
. . . . . . . 8
⊢
〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ V |
| 36 | 27 | fvmpt2 6997 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧
〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ V) → (𝐺‘𝑛) = 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 37 | 34, 35, 36 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 38 | 37 | fveq2d 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉)) |
| 39 | | op2ndg 8001 |
. . . . . . 7
⊢
((if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = 𝑄) |
| 40 | 14, 6, 39 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = 𝑄) |
| 41 | 38, 40 | eqtrd 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = 𝑄) |
| 42 | 37 | fveq2d 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉)) |
| 43 | | op1stg 8000 |
. . . . . . 7
⊢
((if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 44 | 14, 6, 43 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 45 | 42, 44 | eqtrd 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 46 | 41, 45 | oveq12d 7423 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) − (1st
‘(𝐺‘𝑛))) = (𝑄 − if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
| 47 | 33, 46 | eqtrd 2770 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = (𝑄 − if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
| 48 | 29 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 49 | | eqid 2735 |
. . . . . 6
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
| 50 | 49 | ovolfsval 25423 |
. . . . 5
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻‘𝑛)) − (1st ‘(𝐻‘𝑛)))) |
| 51 | 48, 50 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻‘𝑛)) − (1st ‘(𝐻‘𝑛)))) |
| 52 | | opex 5439 |
. . . . . . . 8
⊢
〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ V |
| 53 | 28 | fvmpt2 6997 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧
〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ V) → (𝐻‘𝑛) = 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 54 | 34, 52, 53 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) = 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 55 | 54 | fveq2d 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐻‘𝑛)) = (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉)) |
| 56 | | op2ndg 8001 |
. . . . . . 7
⊢ ((𝑃 ∈ ℝ ∧
if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 57 | 12, 14, 56 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 58 | 55, 57 | eqtrd 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐻‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 59 | 54 | fveq2d 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐻‘𝑛)) = (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉)) |
| 60 | | op1stg 8000 |
. . . . . . 7
⊢ ((𝑃 ∈ ℝ ∧
if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = 𝑃) |
| 61 | 12, 14, 60 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = 𝑃) |
| 62 | 59, 61 | eqtrd 2770 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐻‘𝑛)) = 𝑃) |
| 63 | 58, 62 | oveq12d 7423 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐻‘𝑛)) − (1st
‘(𝐻‘𝑛))) = (if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)) |
| 64 | 51, 63 | eqtrd 2770 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) = (if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)) |
| 65 | 47, 64 | oveq12d 7423 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = ((𝑄 − if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) − 𝑃))) |
| 66 | | eqid 2735 |
. . . . 5
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
| 67 | 66 | ovolfsval 25423 |
. . . 4
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 68 | 2, 67 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 69 | 1, 10 | oveq12i 7417 |
. . 3
⊢ (𝑄 − 𝑃) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) |
| 70 | 68, 69 | eqtr4di 2788 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = (𝑄 − 𝑃)) |
| 71 | 17, 65, 70 | 3eqtr4d 2780 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |