MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem3 Structured version   Visualization version   GIF version

Theorem ioombl1lem3 24481
Description: Lemma for ioombl1 24483. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem3 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem3
StepHypRef Expression
1 ioombl1.q . . . . 5 𝑄 = (2nd ‘(𝐹𝑛))
2 ioombl1.f1 . . . . . . 7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 24387 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
42, 3sylan 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
54simp2d 1145 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
61, 5eqeltrid 2843 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
76recnd 10885 . . 3 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℂ)
8 ioombl1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98adantr 484 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 ioombl1.p . . . . . . 7 𝑃 = (1st ‘(𝐹𝑛))
114simp1d 1144 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
1210, 11eqeltrid 2843 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
139, 12ifcld 4499 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
1413, 6ifcld 4499 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
1514recnd 10885 . . 3 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℂ)
1612recnd 10885 . . 3 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℂ)
177, 15, 16npncand 11237 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)) = (𝑄𝑃))
18 ioombl1.b . . . . . . 7 𝐵 = (𝐴(,)+∞)
19 ioombl1.e . . . . . . 7 (𝜑𝐸 ⊆ ℝ)
20 ioombl1.v . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 ioombl1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
22 ioombl1.s . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
23 ioombl1.t . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
24 ioombl1.u . . . . . . 7 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
25 ioombl1.f2 . . . . . . 7 (𝜑𝐸 ran ((,) ∘ 𝐹))
26 ioombl1.f3 . . . . . . 7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
27 ioombl1.g . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
28 ioombl1.h . . . . . . 7 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
2918, 8, 19, 20, 21, 22, 23, 24, 2, 25, 26, 10, 1, 27, 28ioombl1lem1 24479 . . . . . 6 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3029simpld 498 . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 eqid 2738 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3231ovolfsval 24391 . . . . 5 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
3330, 32sylan 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
34 simpr 488 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
35 opex 5362 . . . . . . . 8 ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V
3627fvmpt2 6847 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
3734, 35, 36sylancl 589 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
3837fveq2d 6739 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
39 op2ndg 7792 . . . . . . 7 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
4014, 6, 39syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
4138, 40eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
4237fveq2d 6739 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
43 op1stg 7791 . . . . . . 7 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4414, 6, 43syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4542, 44eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4641, 45oveq12d 7249 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
4733, 46eqtrd 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
4829simprd 499 . . . . 5 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
49 eqid 2738 . . . . . 6 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
5049ovolfsval 24391 . . . . 5 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))))
5148, 50sylan 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))))
52 opex 5362 . . . . . . . 8 𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V
5328fvmpt2 6847 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
5434, 52, 53sylancl 589 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
5554fveq2d 6739 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
56 op2ndg 7792 . . . . . . 7 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5712, 14, 56syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5855, 57eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5954fveq2d 6739 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
60 op1stg 7791 . . . . . . 7 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
6112, 14, 60syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
6259, 61eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
6358, 62oveq12d 7249 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))) = (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃))
6451, 63eqtrd 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃))
6547, 64oveq12d 7249 . 2 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = ((𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)))
66 eqid 2738 . . . . 5 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
6766ovolfsval 24391 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
682, 67sylan 583 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
691, 10oveq12i 7243 . . 3 (𝑄𝑃) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛)))
7068, 69eqtr4di 2797 . 2 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = (𝑄𝑃))
7117, 65, 703eqtr4d 2788 1 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  Vcvv 3420  cin 3879  wss 3880  ifcif 4453  cop 4561   cuni 4833   class class class wbr 5067  cmpt 5149   × cxp 5563  ran crn 5566  ccom 5569  wf 6393  cfv 6397  (class class class)co 7231  1st c1st 7777  2nd c2nd 7778  supcsup 9080  cr 10752  1c1 10754   + caddc 10756  +∞cpnf 10888  *cxr 10890   < clt 10891  cle 10892  cmin 11086  cn 11854  +crp 12610  (,)cioo 12959  seqcseq 13598  abscabs 14821  vol*covol 24383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-sup 9082  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-rp 12611  df-seq 13599  df-exp 13660  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823
This theorem is referenced by:  ioombl1lem4  24482
  Copyright terms: Public domain W3C validator