MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem3 Structured version   Visualization version   GIF version

Theorem ioombl1lem3 24629
Description: Lemma for ioombl1 24631. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem3 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem3
StepHypRef Expression
1 ioombl1.q . . . . 5 𝑄 = (2nd ‘(𝐹𝑛))
2 ioombl1.f1 . . . . . . 7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 24535 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
42, 3sylan 579 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
54simp2d 1141 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
61, 5eqeltrid 2843 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
76recnd 10934 . . 3 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℂ)
8 ioombl1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 ioombl1.p . . . . . . 7 𝑃 = (1st ‘(𝐹𝑛))
114simp1d 1140 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
1210, 11eqeltrid 2843 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
139, 12ifcld 4502 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
1413, 6ifcld 4502 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
1514recnd 10934 . . 3 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℂ)
1612recnd 10934 . . 3 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℂ)
177, 15, 16npncand 11286 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)) = (𝑄𝑃))
18 ioombl1.b . . . . . . 7 𝐵 = (𝐴(,)+∞)
19 ioombl1.e . . . . . . 7 (𝜑𝐸 ⊆ ℝ)
20 ioombl1.v . . . . . . 7 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 ioombl1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
22 ioombl1.s . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
23 ioombl1.t . . . . . . 7 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
24 ioombl1.u . . . . . . 7 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
25 ioombl1.f2 . . . . . . 7 (𝜑𝐸 ran ((,) ∘ 𝐹))
26 ioombl1.f3 . . . . . . 7 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
27 ioombl1.g . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
28 ioombl1.h . . . . . . 7 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
2918, 8, 19, 20, 21, 22, 23, 24, 2, 25, 26, 10, 1, 27, 28ioombl1lem1 24627 . . . . . 6 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3029simpld 494 . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 eqid 2738 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3231ovolfsval 24539 . . . . 5 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
3330, 32sylan 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))))
34 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
35 opex 5373 . . . . . . . 8 ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V
3627fvmpt2 6868 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
3734, 35, 36sylancl 585 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
3837fveq2d 6760 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
39 op2ndg 7817 . . . . . . 7 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
4014, 6, 39syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
4138, 40eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
4237fveq2d 6760 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
43 op1stg 7816 . . . . . . 7 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4414, 6, 43syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4542, 44eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
4641, 45oveq12d 7273 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) − (1st ‘(𝐺𝑛))) = (𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
4733, 46eqtrd 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
4829simprd 495 . . . . 5 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
49 eqid 2738 . . . . . 6 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
5049ovolfsval 24539 . . . . 5 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))))
5148, 50sylan 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))))
52 opex 5373 . . . . . . . 8 𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V
5328fvmpt2 6868 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
5434, 52, 53sylancl 585 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
5554fveq2d 6760 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
56 op2ndg 7817 . . . . . . 7 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5712, 14, 56syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5855, 57eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
5954fveq2d 6760 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
60 op1stg 7816 . . . . . . 7 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
6112, 14, 60syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
6259, 61eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
6358, 62oveq12d 7273 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐻𝑛)) − (1st ‘(𝐻𝑛))) = (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃))
6451, 63eqtrd 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃))
6547, 64oveq12d 7273 . 2 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = ((𝑄 − if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)) + (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) − 𝑃)))
66 eqid 2738 . . . . 5 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
6766ovolfsval 24539 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
682, 67sylan 579 . . 3 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
691, 10oveq12i 7267 . . 3 (𝑄𝑃) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛)))
7068, 69eqtr4di 2797 . 2 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = (𝑄𝑃))
7117, 65, 703eqtr4d 2788 1 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  ifcif 4456  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  supcsup 9129  cr 10801  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  +crp 12659  (,)cioo 13008  seqcseq 13649  abscabs 14873  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  ioombl1lem4  24630
  Copyright terms: Public domain W3C validator