MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsval Structured version   Visualization version   GIF version

Theorem ovolfsval 24834
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsval ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))

Proof of Theorem ovolfsval
StepHypRef Expression
1 ovolfs.1 . . . 4 𝐺 = ((abs ∘ − ) ∘ 𝐹)
21fveq1i 6843 . . 3 (𝐺𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁)
3 fvco3 6940 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
42, 3eqtrid 2788 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
5 ffvelcdm 7032 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
65elin2d 4159 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
7 1st2nd2 7960 . . . . . 6 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
86, 7syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
98fveq2d 6846 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩))
10 df-ov 7360 . . . 4 ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
119, 10eqtr4di 2794 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))))
12 ovolfcl 24830 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
1312simp1d 1142 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℝ)
1413recnd 11183 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℂ)
1512simp2d 1143 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℝ)
1615recnd 11183 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℂ)
17 eqid 2736 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 24134 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹𝑁)) ∈ ℂ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
1914, 16, 18syl2anc 584 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
20 abssuble0 15213 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2112, 20syl 17 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2219, 21eqtrd 2776 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2311, 22eqtrd 2776 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
244, 23eqtrd 2776 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cin 3909  cop 4592   class class class wbr 5105   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  cc 11049  cr 11050  cle 11190  cmin 11385  cn 12153  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  ovolfsf  24835  ovollb2lem  24852  ovolunlem1a  24860  ovoliunlem1  24866  ovolshftlem1  24873  ovolscalem1  24877  ovolicc1  24880  ovolicc2lem4  24884  ioombl1lem3  24924  ovolfs2  24935  uniioovol  24943  uniioombllem3  24949
  Copyright terms: Public domain W3C validator