| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfsval | Structured version Visualization version GIF version | ||
| Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
| Ref | Expression |
|---|---|
| ovolfsval | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs.1 | . . . 4 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
| 2 | 1 | fveq1i 6823 | . . 3 ⊢ (𝐺‘𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁) |
| 3 | fvco3 6921 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) | |
| 4 | 2, 3 | eqtrid 2778 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) |
| 5 | ffvelcdm 7014 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 6 | 5 | elin2d 4155 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
| 7 | 1st2nd2 7960 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉)) |
| 10 | df-ov 7349 | . . . 4 ⊢ ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
| 11 | 9, 10 | eqtr4di 2784 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁)))) |
| 12 | ovolfcl 25395 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
| 13 | 12 | simp1d 1142 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℝ) |
| 14 | 13 | recnd 11140 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℂ) |
| 15 | 12 | simp2d 1143 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℝ) |
| 16 | 15 | recnd 11140 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℂ) |
| 17 | eqid 2731 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 18 | 17 | cnmetdval 24686 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℂ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
| 19 | 14, 16, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
| 20 | abssuble0 15236 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) | |
| 21 | 12, 20 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
| 22 | 19, 21 | eqtrd 2766 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
| 23 | 11, 22 | eqtrd 2766 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
| 24 | 4, 23 | eqtrd 2766 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 〈cop 4582 class class class wbr 5091 × cxp 5614 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ℂcc 11004 ℝcr 11005 ≤ cle 11147 − cmin 11344 ℕcn 12125 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: ovolfsf 25400 ovollb2lem 25417 ovolunlem1a 25425 ovoliunlem1 25431 ovolshftlem1 25438 ovolscalem1 25442 ovolicc1 25445 ovolicc2lem4 25449 ioombl1lem3 25489 ovolfs2 25500 uniioovol 25508 uniioombllem3 25514 |
| Copyright terms: Public domain | W3C validator |