MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsval Structured version   Visualization version   GIF version

Theorem ovolfsval 24170
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsval ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))

Proof of Theorem ovolfsval
StepHypRef Expression
1 ovolfs.1 . . . 4 𝐺 = ((abs ∘ − ) ∘ 𝐹)
21fveq1i 6659 . . 3 (𝐺𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁)
3 fvco3 6751 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
42, 3syl5eq 2805 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
5 ffvelrn 6840 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
65elin2d 4104 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
7 1st2nd2 7732 . . . . . 6 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
86, 7syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
98fveq2d 6662 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩))
10 df-ov 7153 . . . 4 ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
119, 10eqtr4di 2811 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))))
12 ovolfcl 24166 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
1312simp1d 1139 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℝ)
1413recnd 10707 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℂ)
1512simp2d 1140 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℝ)
1615recnd 10707 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℂ)
17 eqid 2758 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 23472 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹𝑁)) ∈ ℂ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
1914, 16, 18syl2anc 587 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
20 abssuble0 14736 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2112, 20syl 17 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2219, 21eqtrd 2793 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2311, 22eqtrd 2793 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
244, 23eqtrd 2793 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cin 3857  cop 4528   class class class wbr 5032   × cxp 5522  ccom 5528  wf 6331  cfv 6335  (class class class)co 7150  1st c1st 7691  2nd c2nd 7692  cc 10573  cr 10574  cle 10714  cmin 10908  cn 11674  abscabs 14641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643
This theorem is referenced by:  ovolfsf  24171  ovollb2lem  24188  ovolunlem1a  24196  ovoliunlem1  24202  ovolshftlem1  24209  ovolscalem1  24213  ovolicc1  24216  ovolicc2lem4  24220  ioombl1lem3  24260  ovolfs2  24271  uniioovol  24279  uniioombllem3  24285
  Copyright terms: Public domain W3C validator