Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolfsval | Structured version Visualization version GIF version |
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
Ref | Expression |
---|---|
ovolfsval | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolfs.1 | . . . 4 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
2 | 1 | fveq1i 6659 | . . 3 ⊢ (𝐺‘𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁) |
3 | fvco3 6751 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) | |
4 | 2, 3 | syl5eq 2805 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) |
5 | ffvelrn 6840 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
6 | 5 | elin2d 4104 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
7 | 1st2nd2 7732 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
9 | 8 | fveq2d 6662 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉)) |
10 | df-ov 7153 | . . . 4 ⊢ ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
11 | 9, 10 | eqtr4di 2811 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁)))) |
12 | ovolfcl 24166 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
13 | 12 | simp1d 1139 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℝ) |
14 | 13 | recnd 10707 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℂ) |
15 | 12 | simp2d 1140 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℝ) |
16 | 15 | recnd 10707 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℂ) |
17 | eqid 2758 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
18 | 17 | cnmetdval 23472 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℂ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
19 | 14, 16, 18 | syl2anc 587 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
20 | abssuble0 14736 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) | |
21 | 12, 20 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
22 | 19, 21 | eqtrd 2793 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
23 | 11, 22 | eqtrd 2793 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
24 | 4, 23 | eqtrd 2793 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 〈cop 4528 class class class wbr 5032 × cxp 5522 ∘ ccom 5528 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 1st c1st 7691 2nd c2nd 7692 ℂcc 10573 ℝcr 10574 ≤ cle 10714 − cmin 10908 ℕcn 11674 abscabs 14641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 |
This theorem is referenced by: ovolfsf 24171 ovollb2lem 24188 ovolunlem1a 24196 ovoliunlem1 24202 ovolshftlem1 24209 ovolscalem1 24213 ovolicc1 24216 ovolicc2lem4 24220 ioombl1lem3 24260 ovolfs2 24271 uniioovol 24279 uniioombllem3 24285 |
Copyright terms: Public domain | W3C validator |