Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolfsval | Structured version Visualization version GIF version |
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
Ref | Expression |
---|---|
ovolfsval | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolfs.1 | . . . 4 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
2 | 1 | fveq1i 6757 | . . 3 ⊢ (𝐺‘𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁) |
3 | fvco3 6849 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) | |
4 | 2, 3 | syl5eq 2791 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((abs ∘ − )‘(𝐹‘𝑁))) |
5 | ffvelrn 6941 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
6 | 5 | elin2d 4129 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ (ℝ × ℝ)) |
7 | 1st2nd2 7843 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ (ℝ × ℝ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) = 〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) |
9 | 8 | fveq2d 6760 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉)) |
10 | df-ov 7258 | . . . 4 ⊢ ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((abs ∘ − )‘〈(1st ‘(𝐹‘𝑁)), (2nd ‘(𝐹‘𝑁))〉) | |
11 | 9, 10 | eqtr4di 2797 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁)))) |
12 | ovolfcl 24535 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | |
13 | 12 | simp1d 1140 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℝ) |
14 | 13 | recnd 10934 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹‘𝑁)) ∈ ℂ) |
15 | 12 | simp2d 1141 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℝ) |
16 | 15 | recnd 10934 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹‘𝑁)) ∈ ℂ) |
17 | eqid 2738 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
18 | 17 | cnmetdval 23840 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℂ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
19 | 14, 16, 18 | syl2anc 583 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁))))) |
20 | abssuble0 14968 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁))) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) | |
21 | 12, 20 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹‘𝑁)) − (2nd ‘(𝐹‘𝑁)))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
22 | 19, 21 | eqtrd 2778 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁))(abs ∘ − )(2nd ‘(𝐹‘𝑁))) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
23 | 11, 22 | eqtrd 2778 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹‘𝑁)) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
24 | 4, 23 | eqtrd 2778 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 class class class wbr 5070 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ℂcc 10800 ℝcr 10801 ≤ cle 10941 − cmin 11135 ℕcn 11903 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: ovolfsf 24540 ovollb2lem 24557 ovolunlem1a 24565 ovoliunlem1 24571 ovolshftlem1 24578 ovolscalem1 24582 ovolicc1 24585 ovolicc2lem4 24589 ioombl1lem3 24629 ovolfs2 24640 uniioovol 24648 uniioombllem3 24654 |
Copyright terms: Public domain | W3C validator |