MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsval Structured version   Visualization version   GIF version

Theorem ovolfsval 25505
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsval ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))

Proof of Theorem ovolfsval
StepHypRef Expression
1 ovolfs.1 . . . 4 𝐺 = ((abs ∘ − ) ∘ 𝐹)
21fveq1i 6907 . . 3 (𝐺𝑁) = (((abs ∘ − ) ∘ 𝐹)‘𝑁)
3 fvco3 7008 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
42, 3eqtrid 2789 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((abs ∘ − )‘(𝐹𝑁)))
5 ffvelcdm 7101 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ( ≤ ∩ (ℝ × ℝ)))
65elin2d 4205 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ (ℝ × ℝ))
7 1st2nd2 8053 . . . . . 6 ((𝐹𝑁) ∈ (ℝ × ℝ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
86, 7syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = ⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
98fveq2d 6910 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩))
10 df-ov 7434 . . . 4 ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑁)), (2nd ‘(𝐹𝑁))⟩)
119, 10eqtr4di 2795 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))))
12 ovolfcl 25501 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))))
1312simp1d 1143 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℝ)
1413recnd 11289 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (1st ‘(𝐹𝑁)) ∈ ℂ)
1512simp2d 1144 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℝ)
1615recnd 11289 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (2nd ‘(𝐹𝑁)) ∈ ℂ)
17 eqid 2737 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1817cnmetdval 24791 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℂ ∧ (2nd ‘(𝐹𝑁)) ∈ ℂ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
1914, 16, 18syl2anc 584 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))))
20 abssuble0 15367 . . . . 5 (((1st ‘(𝐹𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹𝑁)) ∈ ℝ ∧ (1st ‘(𝐹𝑁)) ≤ (2nd ‘(𝐹𝑁))) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2112, 20syl 17 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑁)) − (2nd ‘(𝐹𝑁)))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2219, 21eqtrd 2777 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹𝑁))(abs ∘ − )(2nd ‘(𝐹𝑁))) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
2311, 22eqtrd 2777 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑁)) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
244, 23eqtrd 2777 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺𝑁) = ((2nd ‘(𝐹𝑁)) − (1st ‘(𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cin 3950  cop 4632   class class class wbr 5143   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  cc 11153  cr 11154  cle 11296  cmin 11492  cn 12266  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  ovolfsf  25506  ovollb2lem  25523  ovolunlem1a  25531  ovoliunlem1  25537  ovolshftlem1  25544  ovolscalem1  25548  ovolicc1  25551  ovolicc2lem4  25555  ioombl1lem3  25595  ovolfs2  25606  uniioovol  25614  uniioombllem3  25620
  Copyright terms: Public domain W3C validator