MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2a Structured version   Visualization version   GIF version

Theorem uniioombllem2a 25510
Description: Lemma for uniioombl 25517. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem2a (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2a
StepHypRef Expression
1 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21adantr 480 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32ffvelcdmda 7017 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
43elin2d 4152 . . . . . . 7 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ (ℝ × ℝ))
5 1st2nd2 7960 . . . . . . 7 ((𝐹𝑧) ∈ (ℝ × ℝ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
64, 5syl 17 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
76fveq2d 6826 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩))
8 df-ov 7349 . . . . 5 ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
97, 8eqtr4di 2784 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))))
10 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1110ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
1211elin2d 4152 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
13 1st2nd2 7960 . . . . . . . 8 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1412, 13syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1514fveq2d 6826 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
16 df-ov 7349 . . . . . 6 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1715, 16eqtr4di 2784 . . . . 5 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
1817adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
199, 18ineq12d 4168 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
20 ovolfcl 25394 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
212, 20sylan 580 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
2221simp1d 1142 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ)
2322rexrd 11162 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ*)
2421simp2d 1143 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ)
2524rexrd 11162 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ*)
26 ovolfcl 25394 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2710, 26sylan 580 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2827simp1d 1142 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
2928rexrd 11162 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3029adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3127simp2d 1143 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
3231rexrd 11162 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
3332adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
34 iooin 13279 . . . 4 ((((1st ‘(𝐹𝑧)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝐽)) ∈ ℝ* ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ*)) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3523, 25, 30, 33, 34syl22anc 838 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3619, 35eqtrd 2766 . 2 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
37 ioorebas 13351 . 2 (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))) ∈ ran (,)
3836, 37eqeltrdi 2839 1 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  ifcif 4472  cop 4579   cuni 4856  Disj wdisj 5056   class class class wbr 5089   × cxp 5612  ran crn 5615  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  supcsup 9324  cr 11005  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344  cn 12125  +crp 12890  (,)cioo 13245  seqcseq 13908  abscabs 15141  vol*covol 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-ioo 13249
This theorem is referenced by:  uniioombllem2  25511
  Copyright terms: Public domain W3C validator