MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2a Structured version   Visualization version   GIF version

Theorem uniioombllem2a 25636
Description: Lemma for uniioombl 25643. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem2a (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2a
StepHypRef Expression
1 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21adantr 480 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32ffvelcdmda 7118 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
43elin2d 4228 . . . . . . 7 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ (ℝ × ℝ))
5 1st2nd2 8069 . . . . . . 7 ((𝐹𝑧) ∈ (ℝ × ℝ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
64, 5syl 17 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
76fveq2d 6924 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩))
8 df-ov 7451 . . . . 5 ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
97, 8eqtr4di 2798 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))))
10 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1110ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
1211elin2d 4228 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
13 1st2nd2 8069 . . . . . . . 8 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1412, 13syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1514fveq2d 6924 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
16 df-ov 7451 . . . . . 6 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1715, 16eqtr4di 2798 . . . . 5 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
1817adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
199, 18ineq12d 4242 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
20 ovolfcl 25520 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
212, 20sylan 579 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
2221simp1d 1142 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ)
2322rexrd 11340 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ*)
2421simp2d 1143 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ)
2524rexrd 11340 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ*)
26 ovolfcl 25520 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2710, 26sylan 579 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2827simp1d 1142 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
2928rexrd 11340 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3029adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3127simp2d 1143 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
3231rexrd 11340 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
3332adantr 480 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
34 iooin 13441 . . . 4 ((((1st ‘(𝐹𝑧)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝐽)) ∈ ℝ* ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ*)) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3523, 25, 30, 33, 34syl22anc 838 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3619, 35eqtrd 2780 . 2 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
37 ioorebas 13511 . 2 (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))) ∈ ran (,)
3836, 37eqeltrdi 2852 1 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  ifcif 4548  cop 4654   cuni 4931  Disj wdisj 5133   class class class wbr 5166   × cxp 5698  ran crn 5701  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  supcsup 9509  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  +crp 13057  (,)cioo 13407  seqcseq 14052  abscabs 15283  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-ioo 13411
This theorem is referenced by:  uniioombllem2  25637
  Copyright terms: Public domain W3C validator