MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2a Structured version   Visualization version   GIF version

Theorem uniioombllem2a 24969
Description: Lemma for uniioombl 24976. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem2a (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Distinct variable groups:   𝑥,𝑧,𝐹   𝑥,𝐺,𝑧   𝑥,𝐴,𝑧   𝑥,𝐶,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑧   𝑥,𝑇,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem uniioombllem2a
StepHypRef Expression
1 uniioombl.1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21adantr 482 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32ffvelcdmda 7039 . . . . . . . 8 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
43elin2d 4163 . . . . . . 7 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) ∈ (ℝ × ℝ))
5 1st2nd2 7964 . . . . . . 7 ((𝐹𝑧) ∈ (ℝ × ℝ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
64, 5syl 17 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = ⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
76fveq2d 6850 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩))
8 df-ov 7364 . . . . 5 ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) = ((,)‘⟨(1st ‘(𝐹𝑧)), (2nd ‘(𝐹𝑧))⟩)
97, 8eqtr4di 2791 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐹𝑧)) = ((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))))
10 uniioombl.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1110ffvelcdmda 7039 . . . . . . . . 9 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ ( ≤ ∩ (ℝ × ℝ)))
1211elin2d 4163 . . . . . . . 8 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) ∈ (ℝ × ℝ))
13 1st2nd2 7964 . . . . . . . 8 ((𝐺𝐽) ∈ (ℝ × ℝ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1412, 13syl 17 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → (𝐺𝐽) = ⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1514fveq2d 6850 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩))
16 df-ov 7364 . . . . . 6 ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))) = ((,)‘⟨(1st ‘(𝐺𝐽)), (2nd ‘(𝐺𝐽))⟩)
1715, 16eqtr4di 2791 . . . . 5 ((𝜑𝐽 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
1817adantr 482 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((,)‘(𝐺𝐽)) = ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽))))
199, 18ineq12d 4177 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))))
20 ovolfcl 24853 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
212, 20sylan 581 . . . . . 6 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → ((1st ‘(𝐹𝑧)) ∈ ℝ ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ ∧ (1st ‘(𝐹𝑧)) ≤ (2nd ‘(𝐹𝑧))))
2221simp1d 1143 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ)
2322rexrd 11213 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐹𝑧)) ∈ ℝ*)
2421simp2d 1144 . . . . 5 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ)
2524rexrd 11213 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐹𝑧)) ∈ ℝ*)
26 ovolfcl 24853 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2710, 26sylan 581 . . . . . . 7 ((𝜑𝐽 ∈ ℕ) → ((1st ‘(𝐺𝐽)) ∈ ℝ ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ ∧ (1st ‘(𝐺𝐽)) ≤ (2nd ‘(𝐺𝐽))))
2827simp1d 1143 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ)
2928rexrd 11213 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3029adantr 482 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (1st ‘(𝐺𝐽)) ∈ ℝ*)
3127simp2d 1144 . . . . . 6 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ)
3231rexrd 11213 . . . . 5 ((𝜑𝐽 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
3332adantr 482 . . . 4 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (2nd ‘(𝐺𝐽)) ∈ ℝ*)
34 iooin 13307 . . . 4 ((((1st ‘(𝐹𝑧)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑧)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝐽)) ∈ ℝ* ∧ (2nd ‘(𝐺𝐽)) ∈ ℝ*)) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3523, 25, 30, 33, 34syl22anc 838 . . 3 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((1st ‘(𝐹𝑧))(,)(2nd ‘(𝐹𝑧))) ∩ ((1st ‘(𝐺𝐽))(,)(2nd ‘(𝐺𝐽)))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
3619, 35eqtrd 2773 . 2 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) = (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))))
37 ioorebas 13377 . 2 (if((1st ‘(𝐹𝑧)) ≤ (1st ‘(𝐺𝐽)), (1st ‘(𝐺𝐽)), (1st ‘(𝐹𝑧)))(,)if((2nd ‘(𝐹𝑧)) ≤ (2nd ‘(𝐺𝐽)), (2nd ‘(𝐹𝑧)), (2nd ‘(𝐺𝐽)))) ∈ ran (,)
3836, 37eqeltrdi 2842 1 (((𝜑𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹𝑧)) ∩ ((,)‘(𝐺𝐽))) ∈ ran (,))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3913  wss 3914  ifcif 4490  cop 4596   cuni 4869  Disj wdisj 5074   class class class wbr 5109   × cxp 5635  ran crn 5638  ccom 5641  wf 6496  cfv 6500  (class class class)co 7361  1st c1st 7923  2nd c2nd 7924  supcsup 9384  cr 11058  1c1 11060   + caddc 11062  *cxr 11196   < clt 11197  cle 11198  cmin 11393  cn 12161  +crp 12923  (,)cioo 13273  seqcseq 13915  abscabs 15128  vol*covol 24849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-ioo 13277
This theorem is referenced by:  uniioombllem2  24970
  Copyright terms: Public domain W3C validator