Proof of Theorem osumcllem1N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | osumcllem.m | . . 3
⊢ 𝑀 = (𝑋 + {𝑝}) | 
| 2 |  | osumcllem.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 3 |  | osumcllem.p | . . . . . . 7
⊢  + =
(+𝑃‘𝐾) | 
| 4 | 2, 3 | sspadd1 39818 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑋 + 𝑌)) | 
| 6 |  | simpl1 1191 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝐾 ∈ HL) | 
| 7 | 2, 3 | paddssat 39817 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 9 |  | osumcllem.o | . . . . . . . 8
⊢  ⊥ =
(⊥𝑃‘𝐾) | 
| 10 | 2, 9 | 2polssN 39918 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) | 
| 11 | 6, 8, 10 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) | 
| 12 |  | osumcllem.u | . . . . . 6
⊢ 𝑈 = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) | 
| 13 | 11, 12 | sseqtrrdi 4024 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + 𝑌) ⊆ 𝑈) | 
| 14 | 5, 13 | sstrd 3993 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝑈) | 
| 15 |  | simpr 484 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑝 ∈ 𝑈) | 
| 16 | 15 | snssd 4808 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝑈) | 
| 17 |  | simpl2 1192 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ 𝐴) | 
| 18 | 2, 9 | polssatN 39911 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) | 
| 19 | 6, 8, 18 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) | 
| 20 | 2, 9 | polssatN 39911 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ 𝐴) | 
| 21 | 6, 19, 20 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ 𝐴) | 
| 22 | 12, 21 | eqsstrid 4021 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑈 ⊆ 𝐴) | 
| 23 | 16, 22 | sstrd 3993 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → {𝑝} ⊆ 𝐴) | 
| 24 |  | eqid 2736 | . . . . . . . 8
⊢
(PSubSp‘𝐾) =
(PSubSp‘𝐾) | 
| 25 | 2, 24, 9 | polsubN 39910 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾)) | 
| 26 | 6, 19, 25 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾)) | 
| 27 | 12, 26 | eqeltrid 2844 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑈 ∈ (PSubSp‘𝐾)) | 
| 28 | 2, 24, 3 | paddss 39848 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴 ∧ 𝑈 ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ 𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈)) | 
| 29 | 6, 17, 23, 27, 28 | syl13anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → ((𝑋 ⊆ 𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈)) | 
| 30 | 14, 16, 29 | mpbi2and 712 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑋 + {𝑝}) ⊆ 𝑈) | 
| 31 | 1, 30 | eqsstrid 4021 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑀 ⊆ 𝑈) | 
| 32 |  | sseqin2 4222 | . 2
⊢ (𝑀 ⊆ 𝑈 ↔ (𝑈 ∩ 𝑀) = 𝑀) | 
| 33 | 31, 32 | sylib 218 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) |