Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem1N Structured version   Visualization version   GIF version

Theorem osumcllem1N 37897
Description: Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem1N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)

Proof of Theorem osumcllem1N
StepHypRef Expression
1 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
2 osumcllem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 osumcllem.p . . . . . . 7 + = (+𝑃𝐾)
42, 3sspadd1 37756 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
54adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑋 + 𝑌))
6 simpl1 1189 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝐾 ∈ HL)
72, 3paddssat 37755 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
87adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ 𝐴)
9 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
102, 92polssN 37856 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
116, 8, 10syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
12 osumcllem.u . . . . . 6 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
1311, 12sseqtrrdi 3968 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ 𝑈)
145, 13sstrd 3927 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝑈)
15 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑝𝑈)
1615snssd 4739 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝑈)
17 simpl2 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝐴)
182, 9polssatN 37849 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
196, 8, 18syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
202, 9polssatN 37849 . . . . . . . 8 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
216, 19, 20syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2212, 21eqsstrid 3965 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑈𝐴)
2316, 22sstrd 3927 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝐴)
24 eqid 2738 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
252, 24, 9polsubN 37848 . . . . . . 7 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾))
266, 19, 25syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘( ‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾))
2712, 26eqeltrid 2843 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑈 ∈ (PSubSp‘𝐾))
282, 24, 3paddss 37786 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴 ∧ {𝑝} ⊆ 𝐴𝑈 ∈ (PSubSp‘𝐾))) → ((𝑋𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈))
296, 17, 23, 27, 28syl13anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ((𝑋𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈))
3014, 16, 29mpbi2and 708 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + {𝑝}) ⊆ 𝑈)
311, 30eqsstrid 3965 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑀𝑈)
32 sseqin2 4146 . 2 (𝑀𝑈 ↔ (𝑈𝑀) = 𝑀)
3331, 32sylib 217 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844
This theorem is referenced by:  osumcllem2N  37898  osumcllem9N  37905
  Copyright terms: Public domain W3C validator