Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem1N Structured version   Visualization version   GIF version

Theorem osumcllem1N 39959
Description: Lemma for osumclN 39970. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem1N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)

Proof of Theorem osumcllem1N
StepHypRef Expression
1 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
2 osumcllem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 osumcllem.p . . . . . . 7 + = (+𝑃𝐾)
42, 3sspadd1 39818 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
54adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑋 + 𝑌))
6 simpl1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝐾 ∈ HL)
72, 3paddssat 39817 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
87adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ 𝐴)
9 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
102, 92polssN 39918 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
116, 8, 10syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
12 osumcllem.u . . . . . 6 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
1311, 12sseqtrrdi 4024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + 𝑌) ⊆ 𝑈)
145, 13sstrd 3993 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝑈)
15 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑝𝑈)
1615snssd 4808 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝑈)
17 simpl2 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋𝐴)
182, 9polssatN 39911 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
196, 8, 18syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
202, 9polssatN 39911 . . . . . . . 8 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
216, 19, 20syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2212, 21eqsstrid 4021 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑈𝐴)
2316, 22sstrd 3993 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → {𝑝} ⊆ 𝐴)
24 eqid 2736 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
252, 24, 9polsubN 39910 . . . . . . 7 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾))
266, 19, 25syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ( ‘( ‘(𝑋 + 𝑌))) ∈ (PSubSp‘𝐾))
2712, 26eqeltrid 2844 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑈 ∈ (PSubSp‘𝐾))
282, 24, 3paddss 39848 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴 ∧ {𝑝} ⊆ 𝐴𝑈 ∈ (PSubSp‘𝐾))) → ((𝑋𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈))
296, 17, 23, 27, 28syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → ((𝑋𝑈 ∧ {𝑝} ⊆ 𝑈) ↔ (𝑋 + {𝑝}) ⊆ 𝑈))
3014, 16, 29mpbi2and 712 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑋 + {𝑝}) ⊆ 𝑈)
311, 30eqsstrid 4021 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑀𝑈)
32 sseqin2 4222 . 2 (𝑀𝑈 ↔ (𝑈𝑀) = 𝑀)
3331, 32sylib 218 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  cin 3949  wss 3950  {csn 4625  cfv 6560  (class class class)co 7432  lecple 17305  joincjn 18358  Atomscatm 39265  HLchlt 39352  PSubSpcpsubsp 39499  +𝑃cpadd 39798  𝑃cpolN 39905  PSubClcpscN 39937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-polarityN 39906
This theorem is referenced by:  osumcllem2N  39960  osumcllem9N  39967
  Copyright terms: Public domain W3C validator