| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclss2polN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclss2pol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclss2pol.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pclss2pol.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclss2polN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ HL) | |
| 2 | pclss2pol.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | pclss2pol.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 2, 3 | 2polssN 40037 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| 5 | 2, 3 | polssatN 40030 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 2, 3 | polssatN 40030 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 8 | pclss2pol.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 2, 8 | pclssN 40016 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 10 | 1, 4, 7, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 11 | eqid 2733 | . . . . 5 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 12 | 2, 11, 3 | polsubN 40029 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 13 | 5, 12 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 14 | 11, 8 | pclidN 40018 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 15 | 13, 14 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 16 | 10, 15 | sseqtrd 3967 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6488 Atomscatm 39385 HLchlt 39472 PSubSpcpsubsp 39618 PClcpclN 40009 ⊥𝑃cpolN 40024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-proset 18204 df-poset 18223 df-plt 18238 df-lub 18254 df-glb 18255 df-join 18256 df-meet 18257 df-p0 18333 df-p1 18334 df-lat 18342 df-clat 18409 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-atl 39420 df-cvlat 39444 df-hlat 39473 df-psubsp 39625 df-pmap 39626 df-pclN 40010 df-polarityN 40025 |
| This theorem is referenced by: pcl0N 40044 |
| Copyright terms: Public domain | W3C validator |