| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclss2polN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclss2pol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclss2pol.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pclss2pol.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclss2polN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ HL) | |
| 2 | pclss2pol.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | pclss2pol.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 2, 3 | 2polssN 39880 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| 5 | 2, 3 | polssatN 39873 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 2, 3 | polssatN 39873 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 8 | pclss2pol.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 2, 8 | pclssN 39859 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 10 | 1, 4, 7, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 11 | eqid 2735 | . . . . 5 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 12 | 2, 11, 3 | polsubN 39872 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 13 | 5, 12 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 14 | 11, 8 | pclidN 39861 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 15 | 13, 14 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 16 | 10, 15 | sseqtrd 3995 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 Atomscatm 39227 HLchlt 39314 PSubSpcpsubsp 39461 PClcpclN 39852 ⊥𝑃cpolN 39867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-psubsp 39468 df-pmap 39469 df-pclN 39853 df-polarityN 39868 |
| This theorem is referenced by: pcl0N 39887 |
| Copyright terms: Public domain | W3C validator |