![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclss2polN | Structured version Visualization version GIF version |
Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclss2pol.a | β’ π΄ = (AtomsβπΎ) |
pclss2pol.o | β’ β₯ = (β₯πβπΎ) |
pclss2pol.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclss2polN | β’ ((πΎ β HL β§ π β π΄) β (πβπ) β ( β₯ β( β₯ βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 β’ ((πΎ β HL β§ π β π΄) β πΎ β HL) | |
2 | pclss2pol.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
3 | pclss2pol.o | . . . 4 β’ β₯ = (β₯πβπΎ) | |
4 | 2, 3 | 2polssN 38774 | . . 3 β’ ((πΎ β HL β§ π β π΄) β π β ( β₯ β( β₯ βπ))) |
5 | 2, 3 | polssatN 38767 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π΄) |
6 | 2, 3 | polssatN 38767 | . . . 4 β’ ((πΎ β HL β§ ( β₯ βπ) β π΄) β ( β₯ β( β₯ βπ)) β π΄) |
7 | 5, 6 | syldan 591 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ βπ)) β π΄) |
8 | pclss2pol.c | . . . 4 β’ π = (PClβπΎ) | |
9 | 2, 8 | pclssN 38753 | . . 3 β’ ((πΎ β HL β§ π β ( β₯ β( β₯ βπ)) β§ ( β₯ β( β₯ βπ)) β π΄) β (πβπ) β (πβ( β₯ β( β₯ βπ)))) |
10 | 1, 4, 7, 9 | syl3anc 1371 | . 2 β’ ((πΎ β HL β§ π β π΄) β (πβπ) β (πβ( β₯ β( β₯ βπ)))) |
11 | eqid 2732 | . . . . 5 β’ (PSubSpβπΎ) = (PSubSpβπΎ) | |
12 | 2, 11, 3 | polsubN 38766 | . . . 4 β’ ((πΎ β HL β§ ( β₯ βπ) β π΄) β ( β₯ β( β₯ βπ)) β (PSubSpβπΎ)) |
13 | 5, 12 | syldan 591 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ βπ)) β (PSubSpβπΎ)) |
14 | 11, 8 | pclidN 38755 | . . 3 β’ ((πΎ β HL β§ ( β₯ β( β₯ βπ)) β (PSubSpβπΎ)) β (πβ( β₯ β( β₯ βπ))) = ( β₯ β( β₯ βπ))) |
15 | 13, 14 | syldan 591 | . 2 β’ ((πΎ β HL β§ π β π΄) β (πβ( β₯ β( β₯ βπ))) = ( β₯ β( β₯ βπ))) |
16 | 10, 15 | sseqtrd 4021 | 1 β’ ((πΎ β HL β§ π β π΄) β (πβπ) β ( β₯ β( β₯ βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 βcfv 6540 Atomscatm 38121 HLchlt 38208 PSubSpcpsubsp 38355 PClcpclN 38746 β₯πcpolN 38761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-psubsp 38362 df-pmap 38363 df-pclN 38747 df-polarityN 38762 |
This theorem is referenced by: pcl0N 38781 |
Copyright terms: Public domain | W3C validator |