Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclss2polN Structured version   Visualization version   GIF version

Theorem pclss2polN 38780
Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss2pol.a 𝐴 = (Atomsβ€˜πΎ)
pclss2pol.o βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
pclss2pol.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclss2polN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))

Proof of Theorem pclss2polN
StepHypRef Expression
1 simpl 483 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ HL)
2 pclss2pol.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 pclss2pol.o . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
42, 32polssN 38774 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
52, 3polssatN 38767 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴)
62, 3polssatN 38767 . . . 4 ((𝐾 ∈ HL ∧ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) βŠ† 𝐴)
75, 6syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) βŠ† 𝐴)
8 pclss2pol.c . . . 4 π‘ˆ = (PClβ€˜πΎ)
92, 8pclssN 38753 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) βŠ† (π‘ˆβ€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))))
101, 4, 7, 9syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) βŠ† (π‘ˆβ€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))))
11 eqid 2732 . . . . 5 (PSubSpβ€˜πΎ) = (PSubSpβ€˜πΎ)
122, 11, 3polsubN 38766 . . . 4 ((𝐾 ∈ HL ∧ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ∈ (PSubSpβ€˜πΎ))
135, 12syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ∈ (PSubSpβ€˜πΎ))
1411, 8pclidN 38755 . . 3 ((𝐾 ∈ HL ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ∈ (PSubSpβ€˜πΎ)) β†’ (π‘ˆβ€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
1513, 14syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
1610, 15sseqtrd 4021 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  β€˜cfv 6540  Atomscatm 38121  HLchlt 38208  PSubSpcpsubsp 38355  PClcpclN 38746  βŠ₯𝑃cpolN 38761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-psubsp 38362  df-pmap 38363  df-pclN 38747  df-polarityN 38762
This theorem is referenced by:  pcl0N  38781
  Copyright terms: Public domain W3C validator