| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclss2polN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclss2pol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclss2pol.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pclss2pol.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclss2polN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ HL) | |
| 2 | pclss2pol.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | pclss2pol.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 2, 3 | 2polssN 39960 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| 5 | 2, 3 | polssatN 39953 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 2, 3 | polssatN 39953 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 8 | pclss2pol.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 2, 8 | pclssN 39939 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 10 | 1, 4, 7, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
| 11 | eqid 2731 | . . . . 5 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 12 | 2, 11, 3 | polsubN 39952 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 13 | 5, 12 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
| 14 | 11, 8 | pclidN 39941 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 15 | 13, 14 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 16 | 10, 15 | sseqtrd 3971 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 Atomscatm 39308 HLchlt 39395 PSubSpcpsubsp 39541 PClcpclN 39932 ⊥𝑃cpolN 39947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-psubsp 39548 df-pmap 39549 df-pclN 39933 df-polarityN 39948 |
| This theorem is referenced by: pcl0N 39967 |
| Copyright terms: Public domain | W3C validator |