Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclss2polN | Structured version Visualization version GIF version |
Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclss2pol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclss2pol.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pclss2pol.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclss2polN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ HL) | |
2 | pclss2pol.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | pclss2pol.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
4 | 2, 3 | 2polssN 37666 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
5 | 2, 3 | polssatN 37659 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
6 | 2, 3 | polssatN 37659 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
7 | 5, 6 | syldan 594 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) |
8 | pclss2pol.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
9 | 2, 8 | pclssN 37645 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
10 | 1, 4, 7, 9 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘( ⊥ ‘( ⊥ ‘𝑋)))) |
11 | eqid 2737 | . . . . 5 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
12 | 2, 11, 3 | polsubN 37658 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
13 | 5, 12 | syldan 594 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) |
14 | 11, 8 | pclidN 37647 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
15 | 13, 14 | syldan 594 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘( ⊥ ‘( ⊥ ‘𝑋))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
16 | 10, 15 | sseqtrd 3941 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ‘cfv 6380 Atomscatm 37014 HLchlt 37101 PSubSpcpsubsp 37247 PClcpclN 37638 ⊥𝑃cpolN 37653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-undef 8015 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-psubsp 37254 df-pmap 37255 df-pclN 37639 df-polarityN 37654 |
This theorem is referenced by: pcl0N 37673 |
Copyright terms: Public domain | W3C validator |