Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclss2polN Structured version   Visualization version   GIF version

Theorem pclss2polN 37672
Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss2pol.a 𝐴 = (Atoms‘𝐾)
pclss2pol.o = (⊥𝑃𝐾)
pclss2pol.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclss2polN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ ( ‘( 𝑋)))

Proof of Theorem pclss2polN
StepHypRef Expression
1 simpl 486 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 pclss2pol.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclss2pol.o . . . 4 = (⊥𝑃𝐾)
42, 32polssN 37666 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
52, 3polssatN 37659 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
62, 3polssatN 37659 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → ( ‘( 𝑋)) ⊆ 𝐴)
75, 6syldan 594 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) ⊆ 𝐴)
8 pclss2pol.c . . . 4 𝑈 = (PCl‘𝐾)
92, 8pclssN 37645 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ‘( 𝑋)) ∧ ( ‘( 𝑋)) ⊆ 𝐴) → (𝑈𝑋) ⊆ (𝑈‘( ‘( 𝑋))))
101, 4, 7, 9syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ (𝑈‘( ‘( 𝑋))))
11 eqid 2737 . . . . 5 (PSubSp‘𝐾) = (PSubSp‘𝐾)
122, 11, 3polsubN 37658 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → ( ‘( 𝑋)) ∈ (PSubSp‘𝐾))
135, 12syldan 594 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) ∈ (PSubSp‘𝐾))
1411, 8pclidN 37647 . . 3 ((𝐾 ∈ HL ∧ ( ‘( 𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ‘( 𝑋))) = ( ‘( 𝑋)))
1513, 14syldan 594 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘( ‘( 𝑋))) = ( ‘( 𝑋)))
1610, 15sseqtrd 3941 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wss 3866  cfv 6380  Atomscatm 37014  HLchlt 37101  PSubSpcpsubsp 37247  PClcpclN 37638  𝑃cpolN 37653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-undef 8015  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-psubsp 37254  df-pmap 37255  df-pclN 37639  df-polarityN 37654
This theorem is referenced by:  pcl0N  37673
  Copyright terms: Public domain W3C validator