| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcovalg | Structured version Visualization version GIF version | ||
| Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pcovalg | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | pcoval 24938 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 4 | 3 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋)) |
| 5 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ (1 / 2) ↔ 𝑋 ≤ (1 / 2))) | |
| 6 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝑋 → (2 · 𝑥) = (2 · 𝑋)) | |
| 7 | 6 | fveq2d 6826 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘(2 · 𝑥)) = (𝐹‘(2 · 𝑋))) |
| 8 | 6 | fvoveq1d 7368 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑋) − 1))) |
| 9 | 5, 7, 8 | ifbieq12d 4501 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 10 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
| 11 | fvex 6835 | . . . 4 ⊢ (𝐹‘(2 · 𝑋)) ∈ V | |
| 12 | fvex 6835 | . . . 4 ⊢ (𝐺‘((2 · 𝑋) − 1)) ∈ V | |
| 13 | 11, 12 | ifex 4523 | . . 3 ⊢ if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) ∈ V |
| 14 | 9, 10, 13 | fvmpt 6929 | . 2 ⊢ (𝑋 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 15 | 4, 14 | sylan9eq 2786 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 · cmul 11011 ≤ cle 11147 − cmin 11344 / cdiv 11774 2c2 12180 [,]cicc 13248 Cn ccn 23139 IIcii 24795 *𝑝cpco 24927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 df-pco 24932 |
| This theorem is referenced by: pcoval1 24940 pcoval2 24943 pcohtpylem 24946 |
| Copyright terms: Public domain | W3C validator |