Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcovalg | Structured version Visualization version GIF version |
Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pcovalg | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | pcoval 24172 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
4 | 3 | fveq1d 6773 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋)) |
5 | breq1 5082 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ (1 / 2) ↔ 𝑋 ≤ (1 / 2))) | |
6 | oveq2 7279 | . . . . 5 ⊢ (𝑥 = 𝑋 → (2 · 𝑥) = (2 · 𝑋)) | |
7 | 6 | fveq2d 6775 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘(2 · 𝑥)) = (𝐹‘(2 · 𝑋))) |
8 | 6 | fvoveq1d 7293 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑋) − 1))) |
9 | 5, 7, 8 | ifbieq12d 4493 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
10 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
11 | fvex 6784 | . . . 4 ⊢ (𝐹‘(2 · 𝑋)) ∈ V | |
12 | fvex 6784 | . . . 4 ⊢ (𝐺‘((2 · 𝑋) − 1)) ∈ V | |
13 | 11, 12 | ifex 4515 | . . 3 ⊢ if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) ∈ V |
14 | 9, 10, 13 | fvmpt 6872 | . 2 ⊢ (𝑋 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
15 | 4, 14 | sylan9eq 2800 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 0cc0 10872 1c1 10873 · cmul 10877 ≤ cle 11011 − cmin 11205 / cdiv 11632 2c2 12028 [,]cicc 13081 Cn ccn 22373 IIcii 24036 *𝑝cpco 24161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-map 8600 df-top 22041 df-topon 22058 df-cn 22376 df-pco 24166 |
This theorem is referenced by: pcoval1 24174 pcoval2 24177 pcohtpylem 24180 |
Copyright terms: Public domain | W3C validator |