| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcovalg | Structured version Visualization version GIF version | ||
| Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pcovalg | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | pcoval 24944 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 4 | 3 | fveq1d 6842 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋)) |
| 5 | breq1 5105 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ (1 / 2) ↔ 𝑋 ≤ (1 / 2))) | |
| 6 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 𝑋 → (2 · 𝑥) = (2 · 𝑋)) | |
| 7 | 6 | fveq2d 6844 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘(2 · 𝑥)) = (𝐹‘(2 · 𝑋))) |
| 8 | 6 | fvoveq1d 7391 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑋) − 1))) |
| 9 | 5, 7, 8 | ifbieq12d 4513 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 10 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
| 11 | fvex 6853 | . . . 4 ⊢ (𝐹‘(2 · 𝑋)) ∈ V | |
| 12 | fvex 6853 | . . . 4 ⊢ (𝐺‘((2 · 𝑋) − 1)) ∈ V | |
| 13 | 11, 12 | ifex 4535 | . . 3 ⊢ if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) ∈ V |
| 14 | 9, 10, 13 | fvmpt 6950 | . 2 ⊢ (𝑋 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 15 | 4, 14 | sylan9eq 2784 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 · cmul 11049 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 [,]cicc 13285 Cn ccn 23144 IIcii 24801 *𝑝cpco 24933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 df-pco 24938 |
| This theorem is referenced by: pcoval1 24946 pcoval2 24949 pcohtpylem 24952 |
| Copyright terms: Public domain | W3C validator |