MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcovalg Structured version   Visualization version   GIF version

Theorem pcovalg 24913
Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcovalg ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))

Proof of Theorem pcovalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24912 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6893 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋))
5 breq1 5145 . . . 4 (𝑥 = 𝑋 → (𝑥 ≤ (1 / 2) ↔ 𝑋 ≤ (1 / 2)))
6 oveq2 7422 . . . . 5 (𝑥 = 𝑋 → (2 · 𝑥) = (2 · 𝑋))
76fveq2d 6895 . . . 4 (𝑥 = 𝑋 → (𝐹‘(2 · 𝑥)) = (𝐹‘(2 · 𝑋)))
86fvoveq1d 7436 . . . 4 (𝑥 = 𝑋 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑋) − 1)))
95, 7, 8ifbieq12d 4552 . . 3 (𝑥 = 𝑋 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
10 eqid 2727 . . 3 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
11 fvex 6904 . . . 4 (𝐹‘(2 · 𝑋)) ∈ V
12 fvex 6904 . . . 4 (𝐺‘((2 · 𝑋) − 1)) ∈ V
1311, 12ifex 4574 . . 3 if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) ∈ V
149, 10, 13fvmpt 6999 . 2 (𝑋 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
154, 14sylan9eq 2787 1 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  0cc0 11124  1c1 11125   · cmul 11129  cle 11265  cmin 11460   / cdiv 11887  2c2 12283  [,]cicc 13345   Cn ccn 23102  IIcii 24769  *𝑝cpco 24901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-map 8836  df-top 22770  df-topon 22787  df-cn 23105  df-pco 24906
This theorem is referenced by:  pcoval1  24914  pcoval2  24917  pcohtpylem  24920
  Copyright terms: Public domain W3C validator