MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcovalg Structured version   Visualization version   GIF version

Theorem pcovalg 25000
Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcovalg ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))

Proof of Theorem pcovalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24999 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6889 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋))
5 breq1 5128 . . . 4 (𝑥 = 𝑋 → (𝑥 ≤ (1 / 2) ↔ 𝑋 ≤ (1 / 2)))
6 oveq2 7422 . . . . 5 (𝑥 = 𝑋 → (2 · 𝑥) = (2 · 𝑋))
76fveq2d 6891 . . . 4 (𝑥 = 𝑋 → (𝐹‘(2 · 𝑥)) = (𝐹‘(2 · 𝑋)))
86fvoveq1d 7436 . . . 4 (𝑥 = 𝑋 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑋) − 1)))
95, 7, 8ifbieq12d 4536 . . 3 (𝑥 = 𝑋 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
10 eqid 2734 . . 3 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
11 fvex 6900 . . . 4 (𝐹‘(2 · 𝑋)) ∈ V
12 fvex 6900 . . . 4 (𝐺‘((2 · 𝑋) − 1)) ∈ V
1311, 12ifex 4558 . . 3 if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) ∈ V
149, 10, 13fvmpt 6997 . 2 (𝑋 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
154, 14sylan9eq 2789 1 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4507   class class class wbr 5125  cmpt 5207  cfv 6542  (class class class)co 7414  0cc0 11138  1c1 11139   · cmul 11143  cle 11279  cmin 11475   / cdiv 11903  2c2 12304  [,]cicc 13373   Cn ccn 23197  IIcii 24856  *𝑝cpco 24988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-top 22867  df-topon 22884  df-cn 23200  df-pco 24993
This theorem is referenced by:  pcoval1  25001  pcoval2  25004  pcohtpylem  25007
  Copyright terms: Public domain W3C validator