MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval1 Structured version   Visualization version   GIF version

Theorem pcoval1 24176
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))

Proof of Theorem pcoval1
StepHypRef Expression
1 0re 10977 . . . . 5 0 ∈ ℝ
2 1re 10975 . . . . 5 1 ∈ ℝ
3 0le0 12074 . . . . 5 0 ≤ 0
4 halfre 12187 . . . . . 6 (1 / 2) ∈ ℝ
5 halflt1 12191 . . . . . 6 (1 / 2) < 1
64, 2, 5ltleii 11098 . . . . 5 (1 / 2) ≤ 1
7 iccss 13147 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1))
81, 2, 3, 6, 7mp4an 690 . . . 4 (0[,](1 / 2)) ⊆ (0[,]1)
98sseli 3917 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 24175 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 593 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 elii1 24098 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
1514simprbi 497 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
1615iftrued 4467 . . 3 (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1716adantl 482 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1813, 17eqtrd 2778 1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  [,]cicc 13082   Cn ccn 22375  IIcii 24038  *𝑝cpco 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-icc 13086  df-top 22043  df-topon 22060  df-cn 22378  df-pco 24168
This theorem is referenced by:  pco0  24177  pcoass  24187  pcorevlem  24189
  Copyright terms: Public domain W3C validator