Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval1 Structured version   Visualization version   GIF version

Theorem pcoval1 23624
 Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))

Proof of Theorem pcoval1
StepHypRef Expression
1 0re 10641 . . . . 5 0 ∈ ℝ
2 1re 10639 . . . . 5 1 ∈ ℝ
3 0le0 11735 . . . . 5 0 ≤ 0
4 halfre 11848 . . . . . 6 (1 / 2) ∈ ℝ
5 halflt1 11852 . . . . . 6 (1 / 2) < 1
64, 2, 5ltleii 10761 . . . . 5 (1 / 2) ≤ 1
7 iccss 12802 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1))
81, 2, 3, 6, 7mp4an 692 . . . 4 (0[,](1 / 2)) ⊆ (0[,]1)
98sseli 3949 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 23623 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 595 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 elii1 23546 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
1514simprbi 500 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
1615iftrued 4458 . . 3 (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1716adantl 485 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1813, 17eqtrd 2859 1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919  ifcif 4450   class class class wbr 5052  ‘cfv 6343  (class class class)co 7149  ℝcr 10534  0cc0 10535  1c1 10536   · cmul 10540   ≤ cle 10674   − cmin 10868   / cdiv 11295  2c2 11689  [,]cicc 12738   Cn ccn 21835  IIcii 23486  *𝑝cpco 23611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-2 11697  df-icc 12742  df-top 21505  df-topon 21522  df-cn 21838  df-pco 23616 This theorem is referenced by:  pco0  23625  pcoass  23635  pcorevlem  23637
 Copyright terms: Public domain W3C validator