MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval1 Structured version   Visualization version   GIF version

Theorem pcoval1 24286
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))

Proof of Theorem pcoval1
StepHypRef Expression
1 0re 11087 . . . . 5 0 ∈ ℝ
2 1re 11085 . . . . 5 1 ∈ ℝ
3 0le0 12184 . . . . 5 0 ≤ 0
4 halfre 12297 . . . . . 6 (1 / 2) ∈ ℝ
5 halflt1 12301 . . . . . 6 (1 / 2) < 1
64, 2, 5ltleii 11208 . . . . 5 (1 / 2) ≤ 1
7 iccss 13257 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1))
81, 2, 3, 6, 7mp4an 691 . . . 4 (0[,](1 / 2)) ⊆ (0[,]1)
98sseli 3935 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 24285 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 594 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 elii1 24208 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
1514simprbi 498 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
1615iftrued 4489 . . 3 (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1716adantl 483 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1813, 17eqtrd 2777 1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wss 3905  ifcif 4481   class class class wbr 5100  cfv 6488  (class class class)co 7346  cr 10980  0cc0 10981  1c1 10982   · cmul 10986  cle 11120  cmin 11315   / cdiv 11742  2c2 12138  [,]cicc 13192   Cn ccn 22485  IIcii 24148  *𝑝cpco 24273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-po 5539  df-so 5540  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7908  df-2nd 7909  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-2 12146  df-icc 13196  df-top 22153  df-topon 22170  df-cn 22488  df-pco 24278
This theorem is referenced by:  pco0  24287  pcoass  24297  pcorevlem  24299
  Copyright terms: Public domain W3C validator