![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcoval1 | Structured version Visualization version GIF version |
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pcoval1 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10378 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | 1re 10376 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 0le0 11483 | . . . . 5 ⊢ 0 ≤ 0 | |
4 | halfre 11596 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
5 | halflt1 11600 | . . . . . 6 ⊢ (1 / 2) < 1 | |
6 | 4, 2, 5 | ltleii 10499 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
7 | iccss 12553 | . . . . 5 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1)) | |
8 | 1, 2, 3, 6, 7 | mp4an 683 | . . . 4 ⊢ (0[,](1 / 2)) ⊆ (0[,]1) |
9 | 8 | sseli 3817 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1)) |
10 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
11 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
12 | 10, 11 | pcovalg 23219 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
13 | 9, 12 | sylan2 586 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
14 | elii1 23142 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) | |
15 | 14 | simprbi 492 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
16 | 15 | iftrued 4315 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
17 | 16 | adantl 475 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
18 | 13, 17 | eqtrd 2814 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ifcif 4307 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 1c1 10273 · cmul 10277 ≤ cle 10412 − cmin 10606 / cdiv 11032 2c2 11430 [,]cicc 12490 Cn ccn 21436 IIcii 23086 *𝑝cpco 23207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-2 11438 df-icc 12494 df-top 21106 df-topon 21123 df-cn 21439 df-pco 23212 |
This theorem is referenced by: pco0 23221 pcoass 23231 pcorevlem 23233 |
Copyright terms: Public domain | W3C validator |