| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcoval1 | Structured version Visualization version GIF version | ||
| Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pcoval1 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | 0le0 12263 | . . . . 5 ⊢ 0 ≤ 0 | |
| 4 | halfre 12371 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 5 | halflt1 12375 | . . . . . 6 ⊢ (1 / 2) < 1 | |
| 6 | 4, 2, 5 | ltleii 11273 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
| 7 | iccss 13351 | . . . . 5 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1)) | |
| 8 | 1, 2, 3, 6, 7 | mp4an 693 | . . . 4 ⊢ (0[,](1 / 2)) ⊆ (0[,]1) |
| 9 | 8 | sseli 3939 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1)) |
| 10 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 11 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 12 | 10, 11 | pcovalg 24945 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 13 | 9, 12 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 14 | elii1 24864 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) | |
| 15 | 14 | simprbi 496 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
| 16 | 15 | iftrued 4492 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
| 18 | 13, 17 | eqtrd 2764 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ifcif 4484 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 · cmul 11049 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 [,]cicc 13285 Cn ccn 23144 IIcii 24801 *𝑝cpco 24933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-icc 13289 df-top 22814 df-topon 22831 df-cn 23147 df-pco 24938 |
| This theorem is referenced by: pco0 24947 pcoass 24957 pcorevlem 24959 |
| Copyright terms: Public domain | W3C validator |