Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcoval | Structured version Visualization version GIF version |
Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pcoval | ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | fveq1 6755 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) |
5 | fveq1 6755 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) |
7 | 4, 6 | ifeq12d 4477 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) |
8 | 7 | mpteq2dv 5172 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
9 | pcofval 24079 | . . 3 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
10 | ovex 7288 | . . . 4 ⊢ (0[,]1) ∈ V | |
11 | 10 | mptex 7081 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ V |
12 | 8, 9, 11 | ovmpoa 7406 | . 2 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
13 | 1, 2, 12 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 [,]cicc 13011 Cn ccn 22283 IIcii 23944 *𝑝cpco 24069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 df-pco 24074 |
This theorem is referenced by: pcovalg 24081 pco1 24084 pcocn 24086 copco 24087 pcopt 24091 pcopt2 24092 pcoass 24093 |
Copyright terms: Public domain | W3C validator |