MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval Structured version   Visualization version   GIF version

Theorem pcoval 24909
Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐽

Proof of Theorem pcoval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . 2 (𝜑𝐺 ∈ (II Cn 𝐽))
3 fveq1 6821 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥)))
43adantr 480 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥)))
5 fveq1 6821 . . . . . 6 (𝑔 = 𝐺 → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
65adantl 481 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
74, 6ifeq12d 4498 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
87mpteq2dv 5186 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
9 pcofval 24908 . . 3 (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))
10 ovex 7382 . . . 4 (0[,]1) ∈ V
1110mptex 7159 . . 3 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ V
128, 9, 11ovmpoa 7504 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
131, 2, 12syl2anc 584 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4476   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  cmin 11347   / cdiv 11777  2c2 12183  [,]cicc 13251   Cn ccn 23109  IIcii 24766  *𝑝cpco 24898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-top 22779  df-topon 22796  df-cn 23112  df-pco 24903
This theorem is referenced by:  pcovalg  24910  pco1  24913  pcocn  24915  copco  24916  pcopt  24920  pcopt2  24921  pcoass  24922
  Copyright terms: Public domain W3C validator