| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcoval | Structured version Visualization version GIF version | ||
| Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pcoval | ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcoval.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | pcoval.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | fveq1 6874 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) |
| 5 | fveq1 6874 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) |
| 7 | 4, 6 | ifeq12d 4522 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) |
| 8 | 7 | mpteq2dv 5215 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 9 | pcofval 24959 | . . 3 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
| 10 | ovex 7436 | . . . 4 ⊢ (0[,]1) ∈ V | |
| 11 | 10 | mptex 7214 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ V |
| 12 | 8, 9, 11 | ovmpoa 7560 | . 2 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 13 | 1, 2, 12 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 · cmul 11132 ≤ cle 11268 − cmin 11464 / cdiv 11892 2c2 12293 [,]cicc 13363 Cn ccn 23160 IIcii 24817 *𝑝cpco 24949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 df-top 22830 df-topon 22847 df-cn 23163 df-pco 24954 |
| This theorem is referenced by: pcovalg 24961 pco1 24964 pcocn 24966 copco 24967 pcopt 24971 pcopt2 24972 pcoass 24973 |
| Copyright terms: Public domain | W3C validator |