MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval Structured version   Visualization version   GIF version

Theorem pcoval 24967
Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐽

Proof of Theorem pcoval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . 2 (𝜑𝐺 ∈ (II Cn 𝐽))
3 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥)))
43adantr 480 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥)))
5 fveq1 6880 . . . . . 6 (𝑔 = 𝐺 → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
65adantl 481 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1)))
74, 6ifeq12d 4527 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
87mpteq2dv 5220 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
9 pcofval 24966 . . 3 (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))
10 ovex 7443 . . . 4 (0[,]1) ∈ V
1110mptex 7220 . . 3 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ V
128, 9, 11ovmpoa 7567 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
131, 2, 12syl2anc 584 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   · cmul 11139  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  [,]cicc 13370   Cn ccn 23167  IIcii 24824  *𝑝cpco 24956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-top 22837  df-topon 22854  df-cn 23170  df-pco 24961
This theorem is referenced by:  pcovalg  24968  pco1  24971  pcocn  24973  copco  24974  pcopt  24978  pcopt2  24979  pcoass  24980
  Copyright terms: Public domain W3C validator