Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcoval | Structured version Visualization version GIF version |
Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pcoval | ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | fveq1 6824 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘(2 · 𝑥)) = (𝐹‘(2 · 𝑥))) |
5 | fveq1 6824 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘((2 · 𝑥) − 1)) = (𝐺‘((2 · 𝑥) − 1))) |
7 | 4, 6 | ifeq12d 4494 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) |
8 | 7 | mpteq2dv 5194 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
9 | pcofval 24279 | . . 3 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
10 | ovex 7370 | . . . 4 ⊢ (0[,]1) ∈ V | |
11 | 10 | mptex 7155 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ V |
12 | 8, 9, 11 | ovmpoa 7490 | . 2 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
13 | 1, 2, 12 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ifcif 4473 class class class wbr 5092 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 0cc0 10972 1c1 10973 · cmul 10977 ≤ cle 11111 − cmin 11306 / cdiv 11733 2c2 12129 [,]cicc 13183 Cn ccn 22481 IIcii 24144 *𝑝cpco 24269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-map 8688 df-top 22149 df-topon 22166 df-cn 22484 df-pco 24274 |
This theorem is referenced by: pcovalg 24281 pco1 24284 pcocn 24286 copco 24287 pcopt 24291 pcopt2 24292 pcoass 24293 |
Copyright terms: Public domain | W3C validator |