MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   GIF version

Theorem pcoval2 25068
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcoval2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 11292 . . . . 5 0 ∈ ℝ
2 1re 11290 . . . . 5 1 ∈ ℝ
3 halfge0 12510 . . . . 5 0 ≤ (1 / 2)
4 1le1 11918 . . . . 5 1 ≤ 1
5 iccss 13475 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
61, 2, 3, 4, 5mp4an 692 . . . 4 ((1 / 2)[,]1) ⊆ (0[,]1)
76sseli 4004 . . 3 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ (0[,]1))
8 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
108, 9pcovalg 25064 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
117, 10sylan2 592 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
12 pcoval2.4 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘0))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0))
14 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2))
15 halfre 12507 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
1615, 2elicc2i 13473 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
1716simp2bi 1146 . . . . . . . . . . . 12 (𝑋 ∈ ((1 / 2)[,]1) → (1 / 2) ≤ 𝑋)
1817ad2antrl 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2) ≤ 𝑋)
1916simp1bi 1145 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ ℝ)
2019ad2antrl 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈ ℝ)
21 letri3 11375 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2220, 15, 21sylancl 585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2314, 18, 22mpbir2and 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2))
2423oveq2d 7464 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = (2 · (1 / 2)))
25 2cn 12368 . . . . . . . . . 10 2 ∈ ℂ
26 2ne0 12397 . . . . . . . . . 10 2 ≠ 0
2725, 26recidi 12025 . . . . . . . . 9 (2 · (1 / 2)) = 1
2824, 27eqtrdi 2796 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = 1)
2928fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1))
3028oveq1d 7463 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = (1 − 1))
31 1m1e0 12365 . . . . . . . . 9 (1 − 1) = 0
3230, 31eqtrdi 2796 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = 0)
3332fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0))
3413, 29, 333eqtr4d 2790 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1)))
3534ifeq1d 4567 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))))
36 ifid 4588 . . . . 5 if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))
3735, 36eqtrdi 2796 . . . 4 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
3837expr 456 . . 3 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))))
39 iffalse 4557 . . 3 𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4038, 39pm2.61d1 180 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4111, 40eqtrd 2780 1 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  [,]cicc 13410   Cn ccn 23253  IIcii 24920  *𝑝cpco 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-icc 13414  df-top 22921  df-topon 22938  df-cn 23256  df-pco 25057
This theorem is referenced by:  pcoass  25076  pcorevlem  25078
  Copyright terms: Public domain W3C validator