MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   GIF version

Theorem pcoval2 24085
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcoval2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 10908 . . . . 5 0 ∈ ℝ
2 1re 10906 . . . . 5 1 ∈ ℝ
3 halfge0 12120 . . . . 5 0 ≤ (1 / 2)
4 1le1 11533 . . . . 5 1 ≤ 1
5 iccss 13076 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
61, 2, 3, 4, 5mp4an 689 . . . 4 ((1 / 2)[,]1) ⊆ (0[,]1)
76sseli 3913 . . 3 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ (0[,]1))
8 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
108, 9pcovalg 24081 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
117, 10sylan2 592 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
12 pcoval2.4 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘0))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0))
14 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2))
15 halfre 12117 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
1615, 2elicc2i 13074 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
1716simp2bi 1144 . . . . . . . . . . . 12 (𝑋 ∈ ((1 / 2)[,]1) → (1 / 2) ≤ 𝑋)
1817ad2antrl 724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2) ≤ 𝑋)
1916simp1bi 1143 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ ℝ)
2019ad2antrl 724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈ ℝ)
21 letri3 10991 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2220, 15, 21sylancl 585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2314, 18, 22mpbir2and 709 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2))
2423oveq2d 7271 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = (2 · (1 / 2)))
25 2cn 11978 . . . . . . . . . 10 2 ∈ ℂ
26 2ne0 12007 . . . . . . . . . 10 2 ≠ 0
2725, 26recidi 11636 . . . . . . . . 9 (2 · (1 / 2)) = 1
2824, 27eqtrdi 2795 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = 1)
2928fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1))
3028oveq1d 7270 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = (1 − 1))
31 1m1e0 11975 . . . . . . . . 9 (1 − 1) = 0
3230, 31eqtrdi 2795 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = 0)
3332fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0))
3413, 29, 333eqtr4d 2788 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1)))
3534ifeq1d 4475 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))))
36 ifid 4496 . . . . 5 if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))
3735, 36eqtrdi 2795 . . . 4 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
3837expr 456 . . 3 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))))
39 iffalse 4465 . . 3 𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4038, 39pm2.61d1 180 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4111, 40eqtrd 2778 1 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  [,]cicc 13011   Cn ccn 22283  IIcii 23944  *𝑝cpco 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-icc 13015  df-top 21951  df-topon 21968  df-cn 22286  df-pco 24074
This theorem is referenced by:  pcoass  24093  pcorevlem  24095
  Copyright terms: Public domain W3C validator