Proof of Theorem pcoval2
| Step | Hyp | Ref
| Expression |
| 1 | | 0re 11263 |
. . . . 5
⊢ 0 ∈
ℝ |
| 2 | | 1re 11261 |
. . . . 5
⊢ 1 ∈
ℝ |
| 3 | | halfge0 12483 |
. . . . 5
⊢ 0 ≤ (1
/ 2) |
| 4 | | 1le1 11891 |
. . . . 5
⊢ 1 ≤
1 |
| 5 | | iccss 13455 |
. . . . 5
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1))
→ ((1 / 2)[,]1) ⊆ (0[,]1)) |
| 6 | 1, 2, 3, 4, 5 | mp4an 693 |
. . . 4
⊢ ((1 /
2)[,]1) ⊆ (0[,]1) |
| 7 | 6 | sseli 3979 |
. . 3
⊢ (𝑋 ∈ ((1 / 2)[,]1) →
𝑋 ∈
(0[,]1)) |
| 8 | | pcoval.2 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 9 | | pcoval.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 10 | 8, 9 | pcovalg 25045 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 11 | 7, 10 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
| 12 | | pcoval2.4 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0)) |
| 14 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2)) |
| 15 | | halfre 12480 |
. . . . . . . . . . . . . 14
⊢ (1 / 2)
∈ ℝ |
| 16 | 15, 2 | elicc2i 13453 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔
(𝑋 ∈ ℝ ∧ (1
/ 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| 17 | 16 | simp2bi 1147 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ((1 / 2)[,]1) → (1
/ 2) ≤ 𝑋) |
| 18 | 17 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2)
≤ 𝑋) |
| 19 | 16 | simp1bi 1146 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ((1 / 2)[,]1) →
𝑋 ∈
ℝ) |
| 20 | 19 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈
ℝ) |
| 21 | | letri3 11346 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝑋 =
(1 / 2) ↔ (𝑋 ≤ (1 /
2) ∧ (1 / 2) ≤ 𝑋))) |
| 22 | 20, 15, 21 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤
𝑋))) |
| 23 | 14, 18, 22 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2)) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2
· 𝑋) = (2 ·
(1 / 2))) |
| 25 | | 2cn 12341 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
| 26 | | 2ne0 12370 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 27 | 25, 26 | recidi 11998 |
. . . . . . . . 9
⊢ (2
· (1 / 2)) = 1 |
| 28 | 24, 27 | eqtrdi 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2
· 𝑋) =
1) |
| 29 | 28 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1)) |
| 30 | 28 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2
· 𝑋) − 1) = (1
− 1)) |
| 31 | | 1m1e0 12338 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
| 32 | 30, 31 | eqtrdi 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2
· 𝑋) − 1) =
0) |
| 33 | 32 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0)) |
| 34 | 13, 29, 33 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1))) |
| 35 | 34 | ifeq1d 4545 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1)))) |
| 36 | | ifid 4566 |
. . . . 5
⊢ if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)) |
| 37 | 35, 36 | eqtrdi 2793 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
| 38 | 37 | expr 456 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))) |
| 39 | | iffalse 4534 |
. . 3
⊢ (¬
𝑋 ≤ (1 / 2) →
if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
| 40 | 38, 39 | pm2.61d1 180 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
| 41 | 11, 40 | eqtrd 2777 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1))) |