Proof of Theorem pcoval2
Step | Hyp | Ref
| Expression |
1 | | 0re 10977 |
. . . . 5
⊢ 0 ∈
ℝ |
2 | | 1re 10975 |
. . . . 5
⊢ 1 ∈
ℝ |
3 | | halfge0 12190 |
. . . . 5
⊢ 0 ≤ (1
/ 2) |
4 | | 1le1 11603 |
. . . . 5
⊢ 1 ≤
1 |
5 | | iccss 13147 |
. . . . 5
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1))
→ ((1 / 2)[,]1) ⊆ (0[,]1)) |
6 | 1, 2, 3, 4, 5 | mp4an 690 |
. . . 4
⊢ ((1 /
2)[,]1) ⊆ (0[,]1) |
7 | 6 | sseli 3917 |
. . 3
⊢ (𝑋 ∈ ((1 / 2)[,]1) →
𝑋 ∈
(0[,]1)) |
8 | | pcoval.2 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
9 | | pcoval.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
10 | 8, 9 | pcovalg 24175 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
11 | 7, 10 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
12 | | pcoval2.4 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0)) |
14 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2)) |
15 | | halfre 12187 |
. . . . . . . . . . . . . 14
⊢ (1 / 2)
∈ ℝ |
16 | 15, 2 | elicc2i 13145 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔
(𝑋 ∈ ℝ ∧ (1
/ 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
17 | 16 | simp2bi 1145 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ((1 / 2)[,]1) → (1
/ 2) ≤ 𝑋) |
18 | 17 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2)
≤ 𝑋) |
19 | 16 | simp1bi 1144 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ((1 / 2)[,]1) →
𝑋 ∈
ℝ) |
20 | 19 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈
ℝ) |
21 | | letri3 11060 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝑋 =
(1 / 2) ↔ (𝑋 ≤ (1 /
2) ∧ (1 / 2) ≤ 𝑋))) |
22 | 20, 15, 21 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤
𝑋))) |
23 | 14, 18, 22 | mpbir2and 710 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2)) |
24 | 23 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2
· 𝑋) = (2 ·
(1 / 2))) |
25 | | 2cn 12048 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
26 | | 2ne0 12077 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
27 | 25, 26 | recidi 11706 |
. . . . . . . . 9
⊢ (2
· (1 / 2)) = 1 |
28 | 24, 27 | eqtrdi 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2
· 𝑋) =
1) |
29 | 28 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1)) |
30 | 28 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2
· 𝑋) − 1) = (1
− 1)) |
31 | | 1m1e0 12045 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
32 | 30, 31 | eqtrdi 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2
· 𝑋) − 1) =
0) |
33 | 32 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0)) |
34 | 13, 29, 33 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1))) |
35 | 34 | ifeq1d 4478 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1)))) |
36 | | ifid 4499 |
. . . . 5
⊢ if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)) |
37 | 35, 36 | eqtrdi 2794 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
38 | 37 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))) |
39 | | iffalse 4468 |
. . 3
⊢ (¬
𝑋 ≤ (1 / 2) →
if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
40 | 38, 39 | pm2.61d1 180 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))) |
41 | 11, 40 | eqtrd 2778 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1))) |