MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   GIF version

Theorem pcoval2 24943
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcoval2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 11114 . . . . 5 0 ∈ ℝ
2 1re 11112 . . . . 5 1 ∈ ℝ
3 halfge0 12337 . . . . 5 0 ≤ (1 / 2)
4 1le1 11745 . . . . 5 1 ≤ 1
5 iccss 13314 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
61, 2, 3, 4, 5mp4an 693 . . . 4 ((1 / 2)[,]1) ⊆ (0[,]1)
76sseli 3925 . . 3 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ (0[,]1))
8 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
9 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
108, 9pcovalg 24939 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
117, 10sylan2 593 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
12 pcoval2.4 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘0))
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0))
14 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2))
15 halfre 12334 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
1615, 2elicc2i 13312 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
1716simp2bi 1146 . . . . . . . . . . . 12 (𝑋 ∈ ((1 / 2)[,]1) → (1 / 2) ≤ 𝑋)
1817ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2) ≤ 𝑋)
1916simp1bi 1145 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ ℝ)
2019ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈ ℝ)
21 letri3 11198 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2220, 15, 21sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2314, 18, 22mpbir2and 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2))
2423oveq2d 7362 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = (2 · (1 / 2)))
25 2cn 12200 . . . . . . . . . 10 2 ∈ ℂ
26 2ne0 12229 . . . . . . . . . 10 2 ≠ 0
2725, 26recidi 11852 . . . . . . . . 9 (2 · (1 / 2)) = 1
2824, 27eqtrdi 2782 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = 1)
2928fveq2d 6826 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1))
3028oveq1d 7361 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = (1 − 1))
31 1m1e0 12197 . . . . . . . . 9 (1 − 1) = 0
3230, 31eqtrdi 2782 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = 0)
3332fveq2d 6826 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0))
3413, 29, 333eqtr4d 2776 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1)))
3534ifeq1d 4492 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))))
36 ifid 4513 . . . . 5 if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))
3735, 36eqtrdi 2782 . . . 4 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
3837expr 456 . . 3 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))))
39 iffalse 4481 . . 3 𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4038, 39pm2.61d1 180 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4111, 40eqtrd 2766 1 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  cle 11147  cmin 11344   / cdiv 11774  2c2 12180  [,]cicc 13248   Cn ccn 23139  IIcii 24795  *𝑝cpco 24927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-icc 13252  df-top 22809  df-topon 22826  df-cn 23142  df-pco 24932
This theorem is referenced by:  pcoass  24951  pcorevlem  24953
  Copyright terms: Public domain W3C validator