![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem3 | Structured version Visualization version GIF version |
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
phplem2.1 | ⊢ 𝐴 ∈ V |
phplem2.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
phplem3 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6095 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | phplem2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | phplem2.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | phplem2 8493 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
5 | 2 | enref 8339 | . . . 4 ⊢ 𝐴 ≈ 𝐴 |
6 | nnord 7404 | . . . . . 6 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | orddif 6122 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | sneq 4451 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
10 | 9 | difeq2d 3989 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
11 | 10 | eqcoms 2786 | . . . . 5 ⊢ (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
12 | 8, 11 | sylan9eq 2834 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵})) |
13 | 5, 12 | syl5breq 4966 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
14 | 4, 13 | jaodan 940 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
15 | 1, 14 | sylan2 583 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 Vcvv 3415 ∖ cdif 3826 {csn 4441 class class class wbr 4929 Ord word 6028 suc csuc 6031 ωcom 7396 ≈ cen 8303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-om 7397 df-en 8307 |
This theorem is referenced by: phplem4 8495 php 8497 |
Copyright terms: Public domain | W3C validator |