Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42N Structured version   Visualization version   GIF version

Theorem pl42N 38006
Description: Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42.b 𝐵 = (Base‘𝐾)
pl42.l = (le‘𝐾)
pl42.j = (join‘𝐾)
pl42.m = (meet‘𝐾)
pl42.o = (oc‘𝐾)
Assertion
Ref Expression
pl42N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))

Proof of Theorem pl42N
StepHypRef Expression
1 pl42.b . . 3 𝐵 = (Base‘𝐾)
2 pl42.l . . 3 = (le‘𝐾)
3 pl42.j . . 3 = (join‘𝐾)
4 pl42.m . . 3 = (meet‘𝐾)
5 pl42.o . . 3 = (oc‘𝐾)
6 eqid 2740 . . 3 (pmap‘𝐾) = (pmap‘𝐾)
7 eqid 2740 . . 3 (+𝑃𝐾) = (+𝑃𝐾)
81, 2, 3, 4, 5, 6, 7pl42lem4N 38005 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → ((pmap‘𝐾)‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ ((pmap‘𝐾)‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))
9 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
109hllatd 37387 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
11 simpl2 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
12 simpl3 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
131, 3latjcl 18168 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1410, 11, 12, 13syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑌) ∈ 𝐵)
15 simpr1 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑍𝐵)
161, 4latmcl 18169 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
1710, 14, 15, 16syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
18 simpr2 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
191, 3latjcl 18168 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
2010, 17, 18, 19syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
21 simpr3 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
221, 4latmcl 18169 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵𝑉𝐵) → ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ∈ 𝐵)
2310, 20, 21, 22syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ∈ 𝐵)
241, 3latjcl 18168 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2510, 11, 18, 24syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑊) ∈ 𝐵)
261, 3latjcl 18168 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
2710, 12, 21, 26syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑌 𝑉) ∈ 𝐵)
281, 4latmcl 18169 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
2910, 25, 27, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
301, 3latjcl 18168 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))) ∈ 𝐵)
3110, 14, 29, 30syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))) ∈ 𝐵)
321, 2, 6pmaple 37784 . . 3 ((𝐾 ∈ HL ∧ ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ∈ 𝐵 ∧ ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))) ∈ 𝐵) → (((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))) ↔ ((pmap‘𝐾)‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ ((pmap‘𝐾)‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))
339, 23, 31, 32syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))) ↔ ((pmap‘𝐾)‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ ((pmap‘𝐾)‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))
348, 33sylibrd 258 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892   class class class wbr 5079  cfv 6432  (class class class)co 7272  Basecbs 16923  lecple 16980  occoc 16981  joincjn 18040  meetcmee 18041  Latclat 18160  HLchlt 37373  pmapcpmap 37520  +𝑃cpadd 37818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-riotaBAD 36976
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-undef 8081  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-p1 18155  df-lat 18161  df-clat 18228  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374  df-psubsp 37526  df-pmap 37527  df-padd 37819  df-polarityN 37926  df-psubclN 37958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator