![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddssat | Structured version Visualization version GIF version |
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | β’ π΄ = (AtomsβπΎ) |
padd0.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
paddssat | β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β (π + π) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
2 | eqid 2731 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
3 | padd0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | padd0.p | . . 3 β’ + = (+πβπΎ) | |
5 | 1, 2, 3, 4 | paddval 38973 | . 2 β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β (π + π) = ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)})) |
6 | unss 4184 | . . . . . 6 β’ ((π β π΄ β§ π β π΄) β (π βͺ π) β π΄) | |
7 | 6 | biimpi 215 | . . . . 5 β’ ((π β π΄ β§ π β π΄) β (π βͺ π) β π΄) |
8 | ssrab2 4077 | . . . . 5 β’ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)} β π΄ | |
9 | 7, 8 | jctir 520 | . . . 4 β’ ((π β π΄ β§ π β π΄) β ((π βͺ π) β π΄ β§ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)} β π΄)) |
10 | unss 4184 | . . . 4 β’ (((π βͺ π) β π΄ β§ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)} β π΄) β ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)}) β π΄) | |
11 | 9, 10 | sylib 217 | . . 3 β’ ((π β π΄ β§ π β π΄) β ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)}) β π΄) |
12 | 11 | 3adant1 1129 | . 2 β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)}) β π΄) |
13 | 5, 12 | eqsstrd 4020 | 1 β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β (π + π) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwrex 3069 {crab 3431 βͺ cun 3946 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7412 lecple 17209 joincjn 18269 Atomscatm 38437 +πcpadd 38970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-padd 38971 |
This theorem is referenced by: paddasslem8 39002 paddasslem11 39005 paddasslem12 39006 paddasslem13 39007 paddasslem16 39010 paddasslem17 39011 paddass 39013 padd4N 39015 paddclN 39017 pmodl42N 39026 pclunN 39073 paddunN 39102 pmapocjN 39105 pclfinclN 39125 osumcllem1N 39131 osumcllem2N 39132 osumcllem9N 39139 osumcllem11N 39141 osumclN 39142 pexmidlem6N 39150 pexmidlem8N 39152 pl42lem3N 39156 |
Copyright terms: Public domain | W3C validator |