Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssat Structured version   Visualization version   GIF version

Theorem paddssat 39815
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssat ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)

Proof of Theorem paddssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2730 . . 3 (join‘𝐾) = (join‘𝐾)
3 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
4 padd0.p . . 3 + = (+𝑃𝐾)
51, 2, 3, 4paddval 39799 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
6 unss 4156 . . . . . 6 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
76biimpi 216 . . . . 5 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
8 ssrab2 4046 . . . . 5 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴
97, 8jctir 520 . . . 4 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴))
10 unss 4156 . . . 4 (((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴) ↔ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
119, 10sylib 218 . . 3 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
12113adant1 1130 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
135, 12eqsstrd 3984 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  cun 3915  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  Atomscatm 39263  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-padd 39797
This theorem is referenced by:  paddasslem8  39828  paddasslem11  39831  paddasslem12  39832  paddasslem13  39833  paddasslem16  39836  paddasslem17  39837  paddass  39839  padd4N  39841  paddclN  39843  pmodl42N  39852  pclunN  39899  paddunN  39928  pmapocjN  39931  pclfinclN  39951  osumcllem1N  39957  osumcllem2N  39958  osumcllem9N  39965  osumcllem11N  39967  osumclN  39968  pexmidlem6N  39976  pexmidlem8N  39978  pl42lem3N  39982
  Copyright terms: Public domain W3C validator