Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssat Structured version   Visualization version   GIF version

Theorem paddssat 36965
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssat ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)

Proof of Theorem paddssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2821 . . 3 (join‘𝐾) = (join‘𝐾)
3 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
4 padd0.p . . 3 + = (+𝑃𝐾)
51, 2, 3, 4paddval 36949 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
6 unss 4160 . . . . . 6 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
76biimpi 218 . . . . 5 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
8 ssrab2 4056 . . . . 5 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴
97, 8jctir 523 . . . 4 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴))
10 unss 4160 . . . 4 (((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴) ↔ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
119, 10sylib 220 . . 3 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
12113adant1 1126 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
135, 12eqsstrd 4005 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  cun 3934  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  lecple 16572  joincjn 17554  Atomscatm 36414  +𝑃cpadd 36946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-padd 36947
This theorem is referenced by:  paddasslem8  36978  paddasslem11  36981  paddasslem12  36982  paddasslem13  36983  paddasslem16  36986  paddasslem17  36987  paddass  36989  padd4N  36991  paddclN  36993  pmodl42N  37002  pclunN  37049  paddunN  37078  pmapocjN  37081  pclfinclN  37101  osumcllem1N  37107  osumcllem2N  37108  osumcllem9N  37115  osumcllem11N  37117  osumclN  37118  pexmidlem6N  37126  pexmidlem8N  37128  pl42lem3N  37132
  Copyright terms: Public domain W3C validator