![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddssat | Structured version Visualization version GIF version |
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddssat | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2735 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | padd0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | padd0.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
5 | 1, 2, 3, 4 | paddval 39781 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
6 | unss 4200 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ↔ (𝑋 ∪ 𝑌) ⊆ 𝐴) | |
7 | 6 | biimpi 216 | . . . . 5 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ∪ 𝑌) ⊆ 𝐴) |
8 | ssrab2 4090 | . . . . 5 ⊢ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴 | |
9 | 7, 8 | jctir 520 | . . . 4 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ⊆ 𝐴 ∧ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴)) |
10 | unss 4200 | . . . 4 ⊢ (((𝑋 ∪ 𝑌) ⊆ 𝐴 ∧ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴) ↔ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) | |
11 | 9, 10 | sylib 218 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) |
12 | 11 | 3adant1 1129 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) |
13 | 5, 12 | eqsstrd 4034 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ∪ cun 3961 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 lecple 17305 joincjn 18369 Atomscatm 39245 +𝑃cpadd 39778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-padd 39779 |
This theorem is referenced by: paddasslem8 39810 paddasslem11 39813 paddasslem12 39814 paddasslem13 39815 paddasslem16 39818 paddasslem17 39819 paddass 39821 padd4N 39823 paddclN 39825 pmodl42N 39834 pclunN 39881 paddunN 39910 pmapocjN 39913 pclfinclN 39933 osumcllem1N 39939 osumcllem2N 39940 osumcllem9N 39947 osumcllem11N 39949 osumclN 39950 pexmidlem6N 39958 pexmidlem8N 39960 pl42lem3N 39964 |
Copyright terms: Public domain | W3C validator |