| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddssat | Structured version Visualization version GIF version | ||
| Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddssat | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2737 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | padd0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | padd0.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
| 5 | 1, 2, 3, 4 | paddval 39800 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
| 6 | unss 4190 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ↔ (𝑋 ∪ 𝑌) ⊆ 𝐴) | |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ∪ 𝑌) ⊆ 𝐴) |
| 8 | ssrab2 4080 | . . . . 5 ⊢ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴 | |
| 9 | 7, 8 | jctir 520 | . . . 4 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ⊆ 𝐴 ∧ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴)) |
| 10 | unss 4190 | . . . 4 ⊢ (((𝑋 ∪ 𝑌) ⊆ 𝐴 ∧ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴) ↔ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) |
| 12 | 11 | 3adant1 1131 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴) |
| 13 | 5, 12 | eqsstrd 4018 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ∪ cun 3949 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 lecple 17304 joincjn 18357 Atomscatm 39264 +𝑃cpadd 39797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-padd 39798 |
| This theorem is referenced by: paddasslem8 39829 paddasslem11 39832 paddasslem12 39833 paddasslem13 39834 paddasslem16 39837 paddasslem17 39838 paddass 39840 padd4N 39842 paddclN 39844 pmodl42N 39853 pclunN 39900 paddunN 39929 pmapocjN 39932 pclfinclN 39952 osumcllem1N 39958 osumcllem2N 39959 osumcllem9N 39966 osumcllem11N 39968 osumclN 39969 pexmidlem6N 39977 pexmidlem8N 39979 pl42lem3N 39983 |
| Copyright terms: Public domain | W3C validator |