Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssat Structured version   Visualization version   GIF version

Theorem paddssat 39833
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssat ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)

Proof of Theorem paddssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2735 . . 3 (join‘𝐾) = (join‘𝐾)
3 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
4 padd0.p . . 3 + = (+𝑃𝐾)
51, 2, 3, 4paddval 39817 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
6 unss 4165 . . . . . 6 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
76biimpi 216 . . . . 5 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
8 ssrab2 4055 . . . . 5 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴
97, 8jctir 520 . . . 4 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴))
10 unss 4165 . . . 4 (((𝑋𝑌) ⊆ 𝐴 ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} ⊆ 𝐴) ↔ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
119, 10sylib 218 . . 3 ((𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
12113adant1 1130 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) ⊆ 𝐴)
135, 12eqsstrd 3993 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  cun 3924  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  Atomscatm 39281  +𝑃cpadd 39814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-padd 39815
This theorem is referenced by:  paddasslem8  39846  paddasslem11  39849  paddasslem12  39850  paddasslem13  39851  paddasslem16  39854  paddasslem17  39855  paddass  39857  padd4N  39859  paddclN  39861  pmodl42N  39870  pclunN  39917  paddunN  39946  pmapocjN  39949  pclfinclN  39969  osumcllem1N  39975  osumcllem2N  39976  osumcllem9N  39983  osumcllem11N  39985  osumclN  39986  pexmidlem6N  39994  pexmidlem8N  39996  pl42lem3N  40000
  Copyright terms: Public domain W3C validator