Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem4N Structured version   Visualization version   GIF version

Theorem pl42lem4N 36675
Description: Lemma for pl42N 36676. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem4N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))

Proof of Theorem pl42lem4N
StepHypRef Expression
1 pl42lem.b . . . . 5 𝐵 = (Base‘𝐾)
2 pl42lem.l . . . . 5 = (le‘𝐾)
3 pl42lem.j . . . . 5 = (join‘𝐾)
4 pl42lem.m . . . . 5 = (meet‘𝐾)
5 pl42lem.o . . . . 5 = (oc‘𝐾)
6 pl42lem.f . . . . 5 𝐹 = (pmap‘𝐾)
7 pl42lem.p . . . . 5 + = (+𝑃𝐾)
81, 2, 3, 4, 5, 6, 7pl42lem1N 36672 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))
983impia 1110 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
101, 2, 3, 4, 5, 6, 7pl42lem3N 36674 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
11 simpl1 1184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
1211hllatd 36057 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
13 simpl2 1185 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
14 eqid 2795 . . . . . . . . 9 (PSubSp‘𝐾) = (PSubSp‘𝐾)
151, 14, 6pmapsub 36461 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (PSubSp‘𝐾))
1612, 13, 15syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑋) ∈ (PSubSp‘𝐾))
17 simpl3 1186 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
181, 14, 6pmapsub 36461 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝐹𝑌) ∈ (PSubSp‘𝐾))
1912, 17, 18syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑌) ∈ (PSubSp‘𝐾))
20 simpr2 1188 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
211, 14, 6pmapsub 36461 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → (𝐹𝑊) ∈ (PSubSp‘𝐾))
2212, 20, 21syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑊) ∈ (PSubSp‘𝐾))
23 simpr3 1189 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
241, 14, 6pmapsub 36461 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑉𝐵) → (𝐹𝑉) ∈ (PSubSp‘𝐾))
2512, 23, 24syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹𝑉) ∈ (PSubSp‘𝐾))
2614, 7pmodl42N 36544 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝐹𝑋) ∈ (PSubSp‘𝐾) ∧ (𝐹𝑌) ∈ (PSubSp‘𝐾)) ∧ ((𝐹𝑊) ∈ (PSubSp‘𝐾) ∧ (𝐹𝑉) ∈ (PSubSp‘𝐾))) → ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) = (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))))
2711, 16, 19, 22, 25, 26syl32anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) = (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))))
281, 2, 3, 4, 5, 6, 7pl42lem2N 36673 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
2927, 28eqsstrd 3930 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
3010, 29sstrd 3903 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
31303adant3 1125 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
329, 31eqsstrd 3930 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
33323expia 1114 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  cin 3862  wss 3863   class class class wbr 4966  cfv 6230  (class class class)co 7021  Basecbs 16317  lecple 16406  occoc 16407  joincjn 17388  meetcmee 17389  Latclat 17489  HLchlt 36043  PSubSpcpsubsp 36189  pmapcpmap 36190  +𝑃cpadd 36488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-riotaBAD 35646
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-1st 7550  df-2nd 7551  df-undef 7795  df-proset 17372  df-poset 17390  df-plt 17402  df-lub 17418  df-glb 17419  df-join 17420  df-meet 17421  df-p0 17483  df-p1 17484  df-lat 17490  df-clat 17552  df-oposet 35869  df-ol 35871  df-oml 35872  df-covers 35959  df-ats 35960  df-atl 35991  df-cvlat 36015  df-hlat 36044  df-psubsp 36196  df-pmap 36197  df-padd 36489  df-polarityN 36596  df-psubclN 36628
This theorem is referenced by:  pl42N  36676
  Copyright terms: Public domain W3C validator