![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilhillem | Structured version Visualization version GIF version |
Description: Lemma for hlhil 25387. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | β’ π» = (LHypβπΎ) |
hlhilphllem.u | β’ π = ((HLHilβπΎ)βπ) |
hlhilphl.k | β’ (π β (πΎ β HL β§ π β π»)) |
hlhilphllem.f | β’ πΉ = (Scalarβπ) |
hlhilphllem.l | β’ πΏ = ((DVecHβπΎ)βπ) |
hlhilphllem.v | β’ π = (BaseβπΏ) |
hlhilphllem.a | β’ + = (+gβπΏ) |
hlhilphllem.s | β’ Β· = ( Β·π βπΏ) |
hlhilphllem.r | β’ π = (ScalarβπΏ) |
hlhilphllem.b | β’ π΅ = (Baseβπ ) |
hlhilphllem.p | ⒠⨣ = (+gβπ ) |
hlhilphllem.t | β’ Γ = (.rβπ ) |
hlhilphllem.q | β’ π = (0gβπ ) |
hlhilphllem.z | β’ 0 = (0gβπΏ) |
hlhilphllem.i | β’ , = (Β·πβπ) |
hlhilphllem.j | β’ π½ = ((HDMapβπΎ)βπ) |
hlhilphllem.g | β’ πΊ = ((HGMapβπΎ)βπ) |
hlhilphllem.e | β’ πΈ = (π₯ β π, π¦ β π β¦ ((π½βπ¦)βπ₯)) |
hlhilphllem.o | β’ π = (ocvβπ) |
hlhilphllem.c | β’ πΆ = (ClSubSpβπ) |
Ref | Expression |
---|---|
hlhilhillem | β’ (π β π β Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hlhilphllem.u | . . 3 β’ π = ((HLHilβπΎ)βπ) | |
3 | hlhilphl.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | hlhilphllem.f | . . 3 β’ πΉ = (Scalarβπ) | |
5 | hlhilphllem.l | . . 3 β’ πΏ = ((DVecHβπΎ)βπ) | |
6 | hlhilphllem.v | . . 3 β’ π = (BaseβπΏ) | |
7 | hlhilphllem.a | . . 3 β’ + = (+gβπΏ) | |
8 | hlhilphllem.s | . . 3 β’ Β· = ( Β·π βπΏ) | |
9 | hlhilphllem.r | . . 3 β’ π = (ScalarβπΏ) | |
10 | hlhilphllem.b | . . 3 β’ π΅ = (Baseβπ ) | |
11 | hlhilphllem.p | . . 3 ⒠⨣ = (+gβπ ) | |
12 | hlhilphllem.t | . . 3 β’ Γ = (.rβπ ) | |
13 | hlhilphllem.q | . . 3 β’ π = (0gβπ ) | |
14 | hlhilphllem.z | . . 3 β’ 0 = (0gβπΏ) | |
15 | hlhilphllem.i | . . 3 β’ , = (Β·πβπ) | |
16 | hlhilphllem.j | . . 3 β’ π½ = ((HDMapβπΎ)βπ) | |
17 | hlhilphllem.g | . . 3 β’ πΊ = ((HGMapβπΎ)βπ) | |
18 | hlhilphllem.e | . . 3 β’ πΈ = (π₯ β π, π¦ β π β¦ ((π½βπ¦)βπ₯)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | hlhilphllem 41491 | . 2 β’ (π β π β PreHil) |
20 | 3 | adantr 479 | . . . . . . 7 β’ ((π β§ π₯ β πΆ) β (πΎ β HL β§ π β π»)) |
21 | eqid 2725 | . . . . . . 7 β’ ((ocHβπΎ)βπ) = ((ocHβπΎ)βπ) | |
22 | hlhilphllem.o | . . . . . . 7 β’ π = (ocvβπ) | |
23 | eqid 2725 | . . . . . . . . . . 11 β’ ((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) | |
24 | hlhilphllem.c | . . . . . . . . . . 11 β’ πΆ = (ClSubSpβπ) | |
25 | 1, 23, 2, 24, 3 | hlhillcs 41490 | . . . . . . . . . 10 β’ (π β πΆ = ran ((DIsoHβπΎ)βπ)) |
26 | 25 | eleq2d 2811 | . . . . . . . . 9 β’ (π β (π₯ β πΆ β π₯ β ran ((DIsoHβπΎ)βπ))) |
27 | 26 | biimpa 475 | . . . . . . . 8 β’ ((π β§ π₯ β πΆ) β π₯ β ran ((DIsoHβπΎ)βπ)) |
28 | 1, 5, 23, 6 | dihrnss 40806 | . . . . . . . . 9 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran ((DIsoHβπΎ)βπ)) β π₯ β π) |
29 | 3, 28 | sylan 578 | . . . . . . . 8 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β π₯ β π) |
30 | 27, 29 | syldan 589 | . . . . . . 7 β’ ((π β§ π₯ β πΆ) β π₯ β π) |
31 | 1, 5, 2, 20, 6, 21, 22, 30 | hlhilocv 41489 | . . . . . 6 β’ ((π β§ π₯ β πΆ) β (πβπ₯) = (((ocHβπΎ)βπ)βπ₯)) |
32 | 31 | oveq2d 7431 | . . . . 5 β’ ((π β§ π₯ β πΆ) β (π₯(LSSumβπΏ)(πβπ₯)) = (π₯(LSSumβπΏ)(((ocHβπΎ)βπ)βπ₯))) |
33 | eqid 2725 | . . . . . . . 8 β’ (LSSumβπΏ) = (LSSumβπΏ) | |
34 | 1, 5, 2, 3, 33 | hlhillsm 41488 | . . . . . . 7 β’ (π β (LSSumβπΏ) = (LSSumβπ)) |
35 | 34 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β πΆ) β (LSSumβπΏ) = (LSSumβπ)) |
36 | 35 | oveqd 7432 | . . . . 5 β’ ((π β§ π₯ β πΆ) β (π₯(LSSumβπΏ)(πβπ₯)) = (π₯(LSSumβπ)(πβπ₯))) |
37 | eqid 2725 | . . . . . . 7 β’ (LSubSpβπΏ) = (LSubSpβπΏ) | |
38 | 3 | adantr 479 | . . . . . . 7 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β (πΎ β HL β§ π β π»)) |
39 | 1, 5, 23, 37 | dihrnlss 40805 | . . . . . . . 8 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran ((DIsoHβπΎ)βπ)) β π₯ β (LSubSpβπΏ)) |
40 | 3, 39 | sylan 578 | . . . . . . 7 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β π₯ β (LSubSpβπΏ)) |
41 | 1, 23, 5, 6, 21, 38, 29 | dochoccl 40897 | . . . . . . . . . . 11 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β (π₯ β ran ((DIsoHβπΎ)βπ) β (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)βπ₯)) = π₯)) |
42 | 41 | biimpd 228 | . . . . . . . . . 10 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β (π₯ β ran ((DIsoHβπΎ)βπ) β (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)βπ₯)) = π₯)) |
43 | 42 | ex 411 | . . . . . . . . 9 β’ (π β (π₯ β ran ((DIsoHβπΎ)βπ) β (π₯ β ran ((DIsoHβπΎ)βπ) β (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)βπ₯)) = π₯))) |
44 | 43 | pm2.43d 53 | . . . . . . . 8 β’ (π β (π₯ β ran ((DIsoHβπΎ)βπ) β (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)βπ₯)) = π₯)) |
45 | 44 | imp 405 | . . . . . . 7 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)βπ₯)) = π₯) |
46 | 1, 21, 5, 6, 37, 33, 38, 40, 45 | dochexmid 40996 | . . . . . 6 β’ ((π β§ π₯ β ran ((DIsoHβπΎ)βπ)) β (π₯(LSSumβπΏ)(((ocHβπΎ)βπ)βπ₯)) = π) |
47 | 27, 46 | syldan 589 | . . . . 5 β’ ((π β§ π₯ β πΆ) β (π₯(LSSumβπΏ)(((ocHβπΎ)βπ)βπ₯)) = π) |
48 | 32, 36, 47 | 3eqtr3d 2773 | . . . 4 β’ ((π β§ π₯ β πΆ) β (π₯(LSSumβπ)(πβπ₯)) = π) |
49 | 1, 2, 3, 5, 6 | hlhilbase 41464 | . . . . 5 β’ (π β π = (Baseβπ)) |
50 | 49 | adantr 479 | . . . 4 β’ ((π β§ π₯ β πΆ) β π = (Baseβπ)) |
51 | 48, 50 | eqtrd 2765 | . . 3 β’ ((π β§ π₯ β πΆ) β (π₯(LSSumβπ)(πβπ₯)) = (Baseβπ)) |
52 | 51 | ralrimiva 3136 | . 2 β’ (π β βπ₯ β πΆ (π₯(LSSumβπ)(πβπ₯)) = (Baseβπ)) |
53 | eqid 2725 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
54 | eqid 2725 | . . 3 β’ (LSSumβπ) = (LSSumβπ) | |
55 | 53, 54, 22, 24 | ishil2 21655 | . 2 β’ (π β Hil β (π β PreHil β§ βπ₯ β πΆ (π₯(LSSumβπ)(πβπ₯)) = (Baseβπ))) |
56 | 19, 52, 55 | sylanbrc 581 | 1 β’ (π β π β Hil) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 β wss 3940 ran crn 5673 βcfv 6542 (class class class)co 7415 β cmpo 7417 Basecbs 17177 +gcplusg 17230 .rcmulr 17231 Scalarcsca 17233 Β·π cvsca 17234 Β·πcip 17235 0gc0g 17418 LSSumclsm 19591 LSubSpclss 20817 PreHilcphl 21558 ocvcocv 21594 ClSubSpccss 21595 Hilchil 21637 HLchlt 38877 LHypclh 39512 DVecHcdvh 40606 DIsoHcdih 40756 ocHcoch 40875 HDMapchdma 41320 HGMapchg 41411 HLHilchlh 41460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38480 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-0g 17420 df-mre 17563 df-mrc 17564 df-acs 17566 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-ghm 19170 df-cntz 19270 df-oppg 19299 df-lsm 19593 df-pj1 19594 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-rhm 20413 df-subrg 20510 df-drng 20628 df-staf 20727 df-srng 20728 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lmhm 20909 df-lvec 20990 df-sra 21060 df-rgmod 21061 df-phl 21560 df-ocv 21597 df-css 21598 df-pj 21639 df-hil 21640 df-lsatoms 38503 df-lshyp 38504 df-lcv 38546 df-lfl 38585 df-lkr 38613 df-ldual 38651 df-oposet 38703 df-ol 38705 df-oml 38706 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 df-hlat 38878 df-llines 39026 df-lplanes 39027 df-lvols 39028 df-lines 39029 df-psubsp 39031 df-pmap 39032 df-padd 39324 df-lhyp 39516 df-laut 39517 df-ldil 39632 df-ltrn 39633 df-trl 39687 df-tgrp 40271 df-tendo 40283 df-edring 40285 df-dveca 40531 df-disoa 40557 df-dvech 40607 df-dib 40667 df-dic 40701 df-dih 40757 df-doch 40876 df-djh 40923 df-lcdual 41115 df-mapd 41153 df-hvmap 41285 df-hdmap1 41321 df-hdmap 41322 df-hgmap 41412 df-hlhil 41461 |
This theorem is referenced by: hlathil 41493 |
Copyright terms: Public domain | W3C validator |