![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilhillem | Structured version Visualization version GIF version |
Description: Lemma for hlhil 24807. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
hlhilphllem.a | ⊢ + = (+g‘𝐿) |
hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
hlhilphllem.t | ⊢ × = (.r‘𝑅) |
hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
hlhilphllem.o | ⊢ 𝑂 = (ocv‘𝑈) |
hlhilphllem.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
Ref | Expression |
---|---|
hlhilhillem | ⊢ (𝜑 → 𝑈 ∈ Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
5 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
6 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
8 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
9 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
10 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
11 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
12 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
13 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
14 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
15 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
16 | hlhilphllem.j | . . 3 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
17 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
18 | hlhilphllem.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | hlhilphllem 40426 | . 2 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
20 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | eqid 2736 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
22 | hlhilphllem.o | . . . . . . 7 ⊢ 𝑂 = (ocv‘𝑈) | |
23 | eqid 2736 | . . . . . . . . . . 11 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
24 | hlhilphllem.c | . . . . . . . . . . 11 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
25 | 1, 23, 2, 24, 3 | hlhillcs 40425 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 = ran ((DIsoH‘𝐾)‘𝑊)) |
26 | 25 | eleq2d 2823 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊))) |
27 | 26 | biimpa 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
28 | 1, 5, 23, 6 | dihrnss 39741 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑥 ⊆ 𝑉) |
29 | 3, 28 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑥 ⊆ 𝑉) |
30 | 27, 29 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ⊆ 𝑉) |
31 | 1, 5, 2, 20, 6, 21, 22, 30 | hlhilocv 40424 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑂‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
32 | 31 | oveq2d 7373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥(LSSum‘𝐿)(𝑂‘𝑥)) = (𝑥(LSSum‘𝐿)(((ocH‘𝐾)‘𝑊)‘𝑥))) |
33 | eqid 2736 | . . . . . . . 8 ⊢ (LSSum‘𝐿) = (LSSum‘𝐿) | |
34 | 1, 5, 2, 3, 33 | hlhillsm 40423 | . . . . . . 7 ⊢ (𝜑 → (LSSum‘𝐿) = (LSSum‘𝑈)) |
35 | 34 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (LSSum‘𝐿) = (LSSum‘𝑈)) |
36 | 35 | oveqd 7374 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥(LSSum‘𝐿)(𝑂‘𝑥)) = (𝑥(LSSum‘𝑈)(𝑂‘𝑥))) |
37 | eqid 2736 | . . . . . . 7 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
38 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
39 | 1, 5, 23, 37 | dihrnlss 39740 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑥 ∈ (LSubSp‘𝐿)) |
40 | 3, 39 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑥 ∈ (LSubSp‘𝐿)) |
41 | 1, 23, 5, 6, 21, 38, 29 | dochoccl 39832 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
42 | 41 | biimpd 228 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
43 | 42 | ex 413 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊) → (𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))) |
44 | 43 | pm2.43d 53 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
45 | 44 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) |
46 | 1, 21, 5, 6, 37, 33, 38, 40, 45 | dochexmid 39931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑥(LSSum‘𝐿)(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑉) |
47 | 27, 46 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥(LSSum‘𝐿)(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑉) |
48 | 32, 36, 47 | 3eqtr3d 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥(LSSum‘𝑈)(𝑂‘𝑥)) = 𝑉) |
49 | 1, 2, 3, 5, 6 | hlhilbase 40399 | . . . . 5 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
50 | 49 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑉 = (Base‘𝑈)) |
51 | 48, 50 | eqtrd 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥(LSSum‘𝑈)(𝑂‘𝑥)) = (Base‘𝑈)) |
52 | 51 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 (𝑥(LSSum‘𝑈)(𝑂‘𝑥)) = (Base‘𝑈)) |
53 | eqid 2736 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
54 | eqid 2736 | . . 3 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
55 | 53, 54, 22, 24 | ishil2 21125 | . 2 ⊢ (𝑈 ∈ Hil ↔ (𝑈 ∈ PreHil ∧ ∀𝑥 ∈ 𝐶 (𝑥(LSSum‘𝑈)(𝑂‘𝑥)) = (Base‘𝑈))) |
56 | 19, 52, 55 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑈 ∈ Hil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3910 ran crn 5634 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 ·𝑖cip 17138 0gc0g 17321 LSSumclsm 19416 LSubSpclss 20392 PreHilcphl 21028 ocvcocv 21064 ClSubSpccss 21065 Hilchil 21107 HLchlt 37812 LHypclh 38447 DVecHcdvh 39541 DIsoHcdih 39691 ocHcoch 39810 HDMapchdma 40255 HGMapchg 40346 HLHilchlh 40395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-undef 8204 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-0g 17323 df-mre 17466 df-mrc 17467 df-acs 17469 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-ghm 19006 df-cntz 19097 df-oppg 19124 df-lsm 19418 df-pj1 19419 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-subrg 20220 df-staf 20304 df-srng 20305 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lmhm 20483 df-lvec 20564 df-sra 20633 df-rgmod 20634 df-phl 21030 df-ocv 21067 df-css 21068 df-pj 21109 df-hil 21110 df-lsatoms 37438 df-lshyp 37439 df-lcv 37481 df-lfl 37520 df-lkr 37548 df-ldual 37586 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 df-tgrp 39206 df-tendo 39218 df-edring 39220 df-dveca 39466 df-disoa 39492 df-dvech 39542 df-dib 39602 df-dic 39636 df-dih 39692 df-doch 39811 df-djh 39858 df-lcdual 40050 df-mapd 40088 df-hvmap 40220 df-hdmap1 40256 df-hdmap 40257 df-hgmap 40347 df-hlhil 40396 |
This theorem is referenced by: hlathil 40428 |
Copyright terms: Public domain | W3C validator |