| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmap0.z | ⊢ 0 = (0.‘𝐾) |
| pmap0.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap0 | ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | 1, 2 | atl0cl 39279 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 4 | eqid 2734 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | pmap0.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39734 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 9 | 4, 2, 5 | atnle0 39285 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 ) |
| 10 | 9 | nrexdv 3136 | . . . 4 ⊢ (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) |
| 11 | rabn0 4369 | . . . 4 ⊢ ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) | |
| 12 | 10, 11 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅) |
| 13 | nne 2935 | . . 3 ⊢ (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) |
| 15 | 8, 14 | eqtrd 2769 | 1 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3419 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 Basecbs 17230 lecple 17281 0.cp0 18438 Atomscatm 39239 AtLatcal 39240 pmapcpmap 39474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-proset 18311 df-poset 18330 df-plt 18345 df-glb 18362 df-p0 18440 df-lat 18447 df-covers 39242 df-ats 39243 df-atl 39274 df-pmap 39481 |
| This theorem is referenced by: pmapeq0 39743 pmapjat1 39830 pol1N 39887 pnonsingN 39910 |
| Copyright terms: Public domain | W3C validator |