| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmap0.z | ⊢ 0 = (0.‘𝐾) |
| pmap0.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap0 | ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | 1, 2 | atl0cl 39267 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 4 | eqid 2735 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | pmap0.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39722 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 9 | 4, 2, 5 | atnle0 39273 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 ) |
| 10 | 9 | nrexdv 3135 | . . . 4 ⊢ (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) |
| 11 | rabn0 4364 | . . . 4 ⊢ ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) | |
| 12 | 10, 11 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅) |
| 13 | nne 2936 | . . 3 ⊢ (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) |
| 15 | 8, 14 | eqtrd 2770 | 1 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ∅c0 4308 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 lecple 17276 0.cp0 18431 Atomscatm 39227 AtLatcal 39228 pmapcpmap 39462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-proset 18304 df-poset 18323 df-plt 18338 df-glb 18355 df-p0 18433 df-lat 18440 df-covers 39230 df-ats 39231 df-atl 39262 df-pmap 39469 |
| This theorem is referenced by: pmapeq0 39731 pmapjat1 39818 pol1N 39875 pnonsingN 39898 |
| Copyright terms: Public domain | W3C validator |