Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Structured version   Visualization version   GIF version

Theorem pmap0 37706
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z 0 = (0.‘𝐾)
pmap0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap0 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)

Proof of Theorem pmap0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmap0.z . . . 4 0 = (0.‘𝐾)
31, 2atl0cl 37244 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
4 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2738 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 pmap0.m . . . 4 𝑀 = (pmap‘𝐾)
71, 4, 5, 6pmapval 37698 . . 3 ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
83, 7mpdan 683 . 2 (𝐾 ∈ AtLat → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
94, 2, 5atnle0 37250 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 )
109nrexdv 3197 . . . 4 (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
11 rabn0 4316 . . . 4 ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
1210, 11sylnibr 328 . . 3 (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅)
13 nne 2946 . . 3 (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
1412, 13sylib 217 . 2 (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
158, 14eqtrd 2778 1 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  c0 4253   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  0.cp0 18056  Atomscatm 37204  AtLatcal 37205  pmapcpmap 37438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-proset 17928  df-poset 17946  df-plt 17963  df-glb 17980  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-pmap 37445
This theorem is referenced by:  pmapeq0  37707  pmapjat1  37794  pol1N  37851  pnonsingN  37874
  Copyright terms: Public domain W3C validator