Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Structured version   Visualization version   GIF version

Theorem pmap0 39099
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z 0 = (0.β€˜πΎ)
pmap0.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmap0 (𝐾 ∈ AtLat β†’ (π‘€β€˜ 0 ) = βˆ…)

Proof of Theorem pmap0
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 pmap0.z . . . 4 0 = (0.β€˜πΎ)
31, 2atl0cl 38636 . . 3 (𝐾 ∈ AtLat β†’ 0 ∈ (Baseβ€˜πΎ))
4 eqid 2731 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
5 eqid 2731 . . . 4 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
6 pmap0.m . . . 4 𝑀 = (pmapβ€˜πΎ)
71, 4, 5, 6pmapval 39091 . . 3 ((𝐾 ∈ AtLat ∧ 0 ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜ 0 ) = {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 })
83, 7mpdan 684 . 2 (𝐾 ∈ AtLat β†’ (π‘€β€˜ 0 ) = {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 })
94, 2, 5atnle0 38642 . . . . 5 ((𝐾 ∈ AtLat ∧ π‘Ž ∈ (Atomsβ€˜πΎ)) β†’ Β¬ π‘Ž(leβ€˜πΎ) 0 )
109nrexdv 3148 . . . 4 (𝐾 ∈ AtLat β†’ Β¬ βˆƒπ‘Ž ∈ (Atomsβ€˜πΎ)π‘Ž(leβ€˜πΎ) 0 )
11 rabn0 4385 . . . 4 ({π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 } β‰  βˆ… ↔ βˆƒπ‘Ž ∈ (Atomsβ€˜πΎ)π‘Ž(leβ€˜πΎ) 0 )
1210, 11sylnibr 329 . . 3 (𝐾 ∈ AtLat β†’ Β¬ {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 } β‰  βˆ…)
13 nne 2943 . . 3 (Β¬ {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 } β‰  βˆ… ↔ {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 } = βˆ…)
1412, 13sylib 217 . 2 (𝐾 ∈ AtLat β†’ {π‘Ž ∈ (Atomsβ€˜πΎ) ∣ π‘Ž(leβ€˜πΎ) 0 } = βˆ…)
158, 14eqtrd 2771 1 (𝐾 ∈ AtLat β†’ (π‘€β€˜ 0 ) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆƒwrex 3069  {crab 3431  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  Basecbs 17151  lecple 17211  0.cp0 18386  Atomscatm 38596  AtLatcal 38597  pmapcpmap 38831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-proset 18258  df-poset 18276  df-plt 18293  df-glb 18310  df-p0 18388  df-lat 18395  df-covers 38599  df-ats 38600  df-atl 38631  df-pmap 38838
This theorem is referenced by:  pmapeq0  39100  pmapjat1  39187  pol1N  39244  pnonsingN  39267
  Copyright terms: Public domain W3C validator