Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Structured version   Visualization version   GIF version

Theorem pmap0 38082
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z 0 = (0.‘𝐾)
pmap0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap0 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)

Proof of Theorem pmap0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmap0.z . . . 4 0 = (0.‘𝐾)
31, 2atl0cl 37619 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
4 eqid 2737 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2737 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 pmap0.m . . . 4 𝑀 = (pmap‘𝐾)
71, 4, 5, 6pmapval 38074 . . 3 ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
83, 7mpdan 685 . 2 (𝐾 ∈ AtLat → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
94, 2, 5atnle0 37625 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 )
109nrexdv 3143 . . . 4 (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
11 rabn0 4337 . . . 4 ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
1210, 11sylnibr 329 . . 3 (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅)
13 nne 2945 . . 3 (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
1412, 13sylib 217 . 2 (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
158, 14eqtrd 2777 1 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  wne 2941  wrex 3071  {crab 3404  c0 4274   class class class wbr 5097  cfv 6484  Basecbs 17010  lecple 17067  0.cp0 18239  Atomscatm 37579  AtLatcal 37580  pmapcpmap 37814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-proset 18111  df-poset 18129  df-plt 18146  df-glb 18163  df-p0 18241  df-lat 18248  df-covers 37582  df-ats 37583  df-atl 37614  df-pmap 37821
This theorem is referenced by:  pmapeq0  38083  pmapjat1  38170  pol1N  38227  pnonsingN  38250
  Copyright terms: Public domain W3C validator