| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmap0.z | ⊢ 0 = (0.‘𝐾) |
| pmap0.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap0 | ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmap0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | 1, 2 | atl0cl 39348 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 4 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | pmap0.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 1, 4, 5, 6 | pmapval 39802 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 8 | 3, 7 | mpdan 687 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
| 9 | 4, 2, 5 | atnle0 39354 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 ) |
| 10 | 9 | nrexdv 3127 | . . . 4 ⊢ (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) |
| 11 | rabn0 4339 | . . . 4 ⊢ ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) | |
| 12 | 10, 11 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅) |
| 13 | nne 2932 | . . 3 ⊢ (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) |
| 15 | 8, 14 | eqtrd 2766 | 1 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 Basecbs 17120 lecple 17168 0.cp0 18327 Atomscatm 39308 AtLatcal 39309 pmapcpmap 39542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-proset 18200 df-poset 18219 df-plt 18234 df-glb 18251 df-p0 18329 df-lat 18338 df-covers 39311 df-ats 39312 df-atl 39343 df-pmap 39549 |
| This theorem is referenced by: pmapeq0 39811 pmapjat1 39898 pol1N 39955 pnonsingN 39978 |
| Copyright terms: Public domain | W3C validator |