![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
pmap0.z | ⊢ 0 = (0.‘𝐾) |
pmap0.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmap0 | ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmap0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
3 | 1, 2 | atl0cl 39259 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
4 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2740 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | pmap0.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
7 | 1, 4, 5, 6 | pmapval 39714 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
8 | 3, 7 | mpdan 686 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 }) |
9 | 4, 2, 5 | atnle0 39265 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 ) |
10 | 9 | nrexdv 3155 | . . . 4 ⊢ (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) |
11 | rabn0 4412 | . . . 4 ⊢ ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 ) | |
12 | 10, 11 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅) |
13 | nne 2950 | . . 3 ⊢ (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) | |
14 | 12, 13 | sylib 218 | . 2 ⊢ (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅) |
15 | 8, 14 | eqtrd 2780 | 1 ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 0.cp0 18493 Atomscatm 39219 AtLatcal 39220 pmapcpmap 39454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-proset 18365 df-poset 18383 df-plt 18400 df-glb 18417 df-p0 18495 df-lat 18502 df-covers 39222 df-ats 39223 df-atl 39254 df-pmap 39461 |
This theorem is referenced by: pmapeq0 39723 pmapjat1 39810 pol1N 39867 pnonsingN 39890 |
Copyright terms: Public domain | W3C validator |