Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Structured version   Visualization version   GIF version

Theorem pmap0 37061
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z 0 = (0.‘𝐾)
pmap0.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap0 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)

Proof of Theorem pmap0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmap0.z . . . 4 0 = (0.‘𝐾)
31, 2atl0cl 36599 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
4 eqid 2798 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2798 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 pmap0.m . . . 4 𝑀 = (pmap‘𝐾)
71, 4, 5, 6pmapval 37053 . . 3 ((𝐾 ∈ AtLat ∧ 0 ∈ (Base‘𝐾)) → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
83, 7mpdan 686 . 2 (𝐾 ∈ AtLat → (𝑀0 ) = {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 })
94, 2, 5atnle0 36605 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑎 ∈ (Atoms‘𝐾)) → ¬ 𝑎(le‘𝐾) 0 )
109nrexdv 3229 . . . 4 (𝐾 ∈ AtLat → ¬ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
11 rabn0 4293 . . . 4 ({𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ ∃𝑎 ∈ (Atoms‘𝐾)𝑎(le‘𝐾) 0 )
1210, 11sylnibr 332 . . 3 (𝐾 ∈ AtLat → ¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅)
13 nne 2991 . . 3 (¬ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } ≠ ∅ ↔ {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
1412, 13sylib 221 . 2 (𝐾 ∈ AtLat → {𝑎 ∈ (Atoms‘𝐾) ∣ 𝑎(le‘𝐾) 0 } = ∅)
158, 14eqtrd 2833 1 (𝐾 ∈ AtLat → (𝑀0 ) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  c0 4243   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  0.cp0 17639  Atomscatm 36559  AtLatcal 36560  pmapcpmap 36793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-proset 17530  df-poset 17548  df-plt 17560  df-glb 17577  df-p0 17641  df-lat 17648  df-covers 36562  df-ats 36563  df-atl 36594  df-pmap 36800
This theorem is referenced by:  pmapeq0  37062  pmapjat1  37149  pol1N  37206  pnonsingN  37229
  Copyright terms: Public domain W3C validator