![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap0 | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
pmap0.z | β’ 0 = (0.βπΎ) |
pmap0.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmap0 | β’ (πΎ β AtLat β (πβ 0 ) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | pmap0.z | . . . 4 β’ 0 = (0.βπΎ) | |
3 | 1, 2 | atl0cl 38636 | . . 3 β’ (πΎ β AtLat β 0 β (BaseβπΎ)) |
4 | eqid 2731 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
5 | eqid 2731 | . . . 4 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
6 | pmap0.m | . . . 4 β’ π = (pmapβπΎ) | |
7 | 1, 4, 5, 6 | pmapval 39091 | . . 3 β’ ((πΎ β AtLat β§ 0 β (BaseβπΎ)) β (πβ 0 ) = {π β (AtomsβπΎ) β£ π(leβπΎ) 0 }) |
8 | 3, 7 | mpdan 684 | . 2 β’ (πΎ β AtLat β (πβ 0 ) = {π β (AtomsβπΎ) β£ π(leβπΎ) 0 }) |
9 | 4, 2, 5 | atnle0 38642 | . . . . 5 β’ ((πΎ β AtLat β§ π β (AtomsβπΎ)) β Β¬ π(leβπΎ) 0 ) |
10 | 9 | nrexdv 3148 | . . . 4 β’ (πΎ β AtLat β Β¬ βπ β (AtomsβπΎ)π(leβπΎ) 0 ) |
11 | rabn0 4385 | . . . 4 β’ ({π β (AtomsβπΎ) β£ π(leβπΎ) 0 } β β β βπ β (AtomsβπΎ)π(leβπΎ) 0 ) | |
12 | 10, 11 | sylnibr 329 | . . 3 β’ (πΎ β AtLat β Β¬ {π β (AtomsβπΎ) β£ π(leβπΎ) 0 } β β ) |
13 | nne 2943 | . . 3 β’ (Β¬ {π β (AtomsβπΎ) β£ π(leβπΎ) 0 } β β β {π β (AtomsβπΎ) β£ π(leβπΎ) 0 } = β ) | |
14 | 12, 13 | sylib 217 | . 2 β’ (πΎ β AtLat β {π β (AtomsβπΎ) β£ π(leβπΎ) 0 } = β ) |
15 | 8, 14 | eqtrd 2771 | 1 β’ (πΎ β AtLat β (πβ 0 ) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 {crab 3431 β c0 4322 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 0.cp0 18386 Atomscatm 38596 AtLatcal 38597 pmapcpmap 38831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-proset 18258 df-poset 18276 df-plt 18293 df-glb 18310 df-p0 18388 df-lat 18395 df-covers 38599 df-ats 38600 df-atl 38631 df-pmap 38838 |
This theorem is referenced by: pmapeq0 39100 pmapjat1 39187 pol1N 39244 pnonsingN 39267 |
Copyright terms: Public domain | W3C validator |